Принцип действия карбюраторного двигателя

Принцип работы и устройство карбюратора

Карбюратор – это обязательный узел питания двигателя внутреннего сгорания автомобилей и мотоциклов. До конца XX века карбюраторы устанавливались на большинство автомобилей, но в наши дни их прочно вытеснили более удобные и функциональные инжекторные системы. Сейчас они часто встречаются в автомобилях возрастом 20 и более лет.

Принцип работы и устройство простейшего карбюратора

В первом устройстве, изобретенном Л. Христофорисом в 1876 году, топливо нагревалось, испарялось, образовавшиеся пары и потоки воздуха смешивались. Спустя год решение усовершенствовали, использовав принцип топливного распыления, который стал основой для следующих проектов.

До широкого распространения привычных нам устройств были барботажные модели и мембранно-игольчатые. Первые — в виде бензинового бака, в котором близко от поверхности располагалась доска и пара патрубков для подачи из атмосферы и забора смеси топлива и воздуха в мотор. Воздух перемещался под доской, непосредственно над топливом, обогащался парами и становился горючей смесью. Это была простая, но рабочая система. Дроссельная заслонка находилась отдельно. На функционирование мотора с барботажным узлом влияли природные условия — испаряемость зависела от температуры. Такую систему было сложно регулировать, она была взрывоопасна.
Схема барботажного карбюратора.

Мембранно-игольчатое устройство размещается отдельно от бензобака. В нем было нескольких камер, жестко связанных с помощью штока. Седло клапана, через который подавалось топливо, запиралось иглой на штоке. Камеры были соединены топливным каналом и смесительной зоной. Параметры устройства определяли пружины, на которые надавливали мембраны. Такой карбюратор работал независимо от условий на улице и местоположения, был популярен в начале 19 века, когда его устанавливали на автомобилях и мототехнике, в самолетах с поршневыми моторами внутреннего сгорания.
Схема мембранно-игольчатого карбюратора.

Устройство карбюратора наших дней

Сегодня используются поплавковые модели, которые являются самыми усовершенствованными. Их можно увидеть на большинстве машин.
Устройство и работа карбюратора: 1 — регулировочный винт пускового устройства; 2 — штифт рычага 24, входящий в паз рычага 3; 3 — рычаг управления воздушной заслонкой; 4 — винт крепления тяги привода воздушной заслонки; 5 — регулировочный винт приоткрывания дроссельной заслонки первой камеры; 6 — рычаг дроссельной заслонки первой камеры; 7 — ось дроссельной заслонки первой камеры; 8 — рычаг привода дроссельной заслонки второй камеры; 9 — регулировочный винт количества смеси холостого хода; 10 — ось дроссельной заслонки второй камеры; 11 — рычаг дроссельной заслонки второй камеры; 12 — патрубок отсоса картерных газов в задроссельное пространство карбюратора; 13 — дроссельная заслонка второй камеры; 14 — выходные отверстия переходной системы второй камеры; 15 — корпус дроссельных заслонок; 16 — распылитель главной дозирующей системы второй камеры; 17 — малый диффузор; 18 — корпус топливного жиклера переходной системы второй камеры; 19 — распылитель ускорительного насоса; 20 — патрубок подачи топлива в карбюратор; 21 — распылитель эконостата; 22 — воздушная заслонка; 23 — шток пускового устройства; 24 — рычаг воздушной заслонки; 25 — крышка пускового устройства; 26 — штифт рычага 24, действующий от штока 23 пускового устройства; 27 — ось воздушной заслонки; 28 — крышка карбюратора; 29 — трубка с топливным жиклером эконостата; 30 — топливный фильтр; 31 — игольчатый клапан; 32 — эмульсионная трубка второй камеры; 33 — поплавок; 34 — главный топливный жиклер второй камеры; 35 — перепускной жиклер ускорительного насоса; 36 — рычаг привода дроссельных заслонок; 37 — рычаг привода ускорительного насоса; 38 — диафрагма ускорительного насоса; 39 — регулировочный винт качества (состава) смеси холостого хода; 40 — патрубок забора разрежения вакуумного регулятора опережения зажигания. 41 — корпус карбюраторов. 42 — электромагнитный запорный клапан; 43 — регулировочный винт добавочного воздуха заводской подрегулировки системы холостого хода; 44 — диафрагма пускового устройства.

Поплавковый карбюратор состоит из множества элементов:

  • Поплавковая камера для сохранения горючего на заданном уровне.
  • Поплавок, оснащенный специальной иглой, который используется для дозирования уровня бензина.
  • Смесительная камера ― для смешения топлива в мелкодисперсном виде с воздухом.
  • Диффузор — зауженное место для увеличения скорости воздуха.
  • Распылитель, оснащенный жиклером, который соединяет камеры, подает смесь в диффузор.
  • Заслонка дросселя — для регулировки потока рабочей жидкости.
  • Воздушная заслонка — для регулировки потока воздуха, поступающего в карбюратор. С помощью элемента создают смесь «обогащенную», «нормальную» или «бедную».
  • Система холостого хода — подает горючее мимо смесительной камеры по спецканалам в задроссельное пространство.
  • Эконостаты и экономайзеры — обеспечивают дополнительную подачу топлива при существенных нагрузках. Эконостаты работают от разрежения воздуха, экономайзерами управляют принудительно.
  • Подсос горючего — для принудительного обогащения топливной смеси. С помощью рычага водитель приоткрывает дроссельную заслонку, воздух проходит сквозь смесительную камеру и забирает больше горючего. В результате смесь становится обогащенной, помогает запустить холодный двигатель.

Принцип работы карбюратора

Сначала горючее направляется в поплавковую камеру. В момент достижения необходимого уровня поплавок поднимается и перекрывает клапан, через который подается топливо. Когда поплавок опускается, подача топлива возобновляется.

Далее топливо идет в смесительную камеру, где создается горючая смесь. Сверху подается воздух, который соединяется с горючим. В камере находится распылительная трубка с жиклером, а также дроссель и диффузор. Жиклер — это пробка, которая не допускает вытекание топлива из поплавковой камеры. Заслонка, соединенная с педалью, называется дросселем. При надавливании ногой, она открывается, и горючая смесь попадает в цилиндр. В результате машина набирает скорость. В диффузоре находится распределительная трубка.

В момент запуска в смесительной камере формируется разрежение, из распылителя разбрызгивается топливо. Поднимается поток воздуха, который при смешении с топливом, переносит горючее в цилиндр.

В новейших устройствах помимо смесительной и поплавковой камер, находится также пусковое и дозирующее устройство, конструкция холостого хода, экономайзер, ускорительный насос. Устаревшие модели не обеспечивают полноценную работу мотора, поскольку в зависимости от того, холодный или горячий двигатель, смесь должна быть разной. Если запускают холодный двигатель, требуется горючая смесь, обогащенная топливом. В случае, когда мотор долго работал, необходима смесь с небольшим включением топлива.

Для увеличения скорости или езды в нагруженной машине, нужна смесь, сильно обогащенная топливом. Аналогичная ситуация при движении на холостом ходу, на малых оборотах. Такие условия простой карбюратор обеспечить не в силах.

С целью обогащения смеси топливом применяют насос-ускоритель. Когда резко выжимают педаль, проходит воздух, который движется быстрее топлива. С этим связана нехватка топлива в горючей жидкости. При наличии насоса силовой агрегат работает мощнее.

Система холостого хода идеальна для малых оборотов. При таком режиме силовой агрегат функционирует на обогащенной смеси. Однако, одной дозирующей системы недостаточно, ведь на холостом ходу дроссель открывается лишь частично. В новейших карбюраторах горючая смесь формируется около дросселя, поскольку в этом месте, даже если дроссель открыт не полностью, создается необходимое разрежение.

Для запуска мотора требуется смесь, которая обогащена топливом. С этой целью в смесительной камере предусмотрена заслонка с клапаном, через который проходит воздух. На приборной панели автомобиля есть ручка для управления клапаном. При вытягивании ручки клапан приоткрывается, и объем воздуха в смесительной камере сокращается. А количество горючего в смеси возрастает. В результате даже первые порции смеси достаточно насыщены, и мотор быстро заводится. При наличии спускового устройства двигатель работает даже при пониженных температурах.

Возможности дозирующего устройства позволяют создавать смесь, подходящую для работы двигателя в разных режимах. С помощью системы автоматически регулируется состав смеси при работе мотора с малой и средней нагрузкой. В таком режиме топливо подается через дозирующую систему. Однако, даже при полном открытии дросселя горючего часто недостаточно. По этой причине, когда дроссель практически полностью открыт, рычаг, соединенный с ним, воздействует на тягу привода экономайзера — так открывается дополнительный проход из поплавковой камеры. В итоге двигатель функционирует более мощно.

Классификация карбюраторов

Все карбюраторы можно различать по следующим признакам:

  • По направлению движения потока различают горизонтальные и вертикальные модели.
  • По регулировке отверстия распылителя и формированию разрежения разделяют: системы с постоянным разрежением; с постоянным сечением (серийные устройства); с золотниковым дросселированием — модели для мототехники, в них вместо дроссельной заслонки объем поступающей смеси регулирует шибер-золотник.
  • По числу смесительных камер выпускают одно- и многокамерные модели. «Сдвоенные» устройства используются в моторах с цилиндрами, которые находятся далеко друг от друга. В результате каждая половина осуществляет впрыск в свои цилиндры.

Карбюраторный двигатель

Карбюраторный двигатель — это отдельный вид двигателя внутреннего сгорания (ДВС) с наружным формированием смеси. В карбюраторном двигателе внутреннего сгорания горючая смесь по коллектору проходит в цилиндры двигателя и вырабатывается в карбюраторе.

Карбюратор — конструкция в системе питания двигателей внутреннего сгорания, которая служит для перемешивания бензина с воздухом, образовывает горючую смесь и корректирует ее потребление. На сегодняшний день карбюраторные системы заменяются инжекторными.

Смесь представляет собой пары бензина смешанные с воздухом. Когда она проходит в цилиндры двигателя происходит перемешивание с отработанными газами и образование рабочей смеси, которая в конкретный момент поджигается системой зажигания. Поджигание смеси производится благодаря тому, что бензин поступает в газообразном виде и имеется достаточное количество воздуха для горения.

Карбюраторные двигатели подразделяются на четырехтактные и двухтактные. Рабочий цикл четырехтактного карбюраторного двигателя складывается из четырех тактов, они состоят из четырех полуоборотов коленчатого вала; двухтактные же состоят из двух полуоборотов коленчатого вала. Двухтактные двигатели наиболее легкие и получили свое применение в мотоциклах, мотокультиваторах, бензопилах и в других аппаратах.

Двигатели этого типа делятся на два подтипа:

  • Атмосферные, где рабочая смесь проходит благодаря разреживанию в цилиндре при вбирающем движении поршня;
  • Двигатели с наддувом. В них запуск горючей смеси в цилиндр осуществляется под воздействием давления, которое производится компрессором для расширения мощности двигателя. В различные времена использовались спирт, газ, керосин, бензин, но наиболее используемыми остались бензиновые и газовые двигатели.

Устройство карбюраторного двигателя

Общее устройство наиболее простого карбюратора заключает в себе поплавковую камеру с поплавком, жиклёр с распылителем, диффузор и дроссельную заслонку.

Если рассмотреть строение двигателя Л-12/4, то в блоке имеется четыре цилиндра. Вращение коленвала происходит на трех подшипниках. Центральный подшипник прикреплен к валу втулкой. На передней части вала прикрепляется маховик, который приводит в действие детали механизма и скапливает кинетическую энергию, она нужна для движения коленвала в период подготовительных тактов.

Смазка деталей происходит благодаря разбрызгиванию, шестеренчатый насос помогает началу движения распредвала и подает масло, которое разбрызгивается черпаками, происходит зажигание. Радиатор оснащен вентилятором, который служит для охлаждения воды.

На картере установлен сапун, который снижает давление благодаря выпуску газов.

Также имеется глушитель, который уменьшает шум от выхода отработанных газов. Количество оборотов коленчатого вала в автоматическом режиме устанавливает регулятор.

У двигателей ГАЗ-МК верхний отдел картера сделан из чугуна вместе с устройством цилиндров, которые охвачены водяной рубашкой и перекрыты головкой из чугуна, где и расположены камеры сгорания. Также имеются разъемы для свечей зажигания.

Читайте также  Камаз 55102 технические характеристики грузоподъемность

Водяная рубашка подсоединена к системе охлаждения. Низ двигателя затянут стальным поддоном, который выполняет функцию емкости для масла. Также там закреплен масляный насос, который приводит в движение распредвал.

Вращение коленчатого вала происходит также на трех подшипниках. Их вкладыши заполнены баббитом, где имеются смазочные канавки.

Чугунные крышки подшипников прикрепляются к блоку двумя болтами.

Передний сальник коленвала сделан из двух частей и представляет сердечник, который окружен платиной асбеста. Поршни сделаны из алюминия и скреплены шатуном полым стальным пальцем. Маховик прикреплен к коленвалу. Распредвал вращается на трех подшипниках и приводится в движение двумя шестернями.

Клапаны двигателя находятся справа. Система питания включает в себя бензобак, бензопроводы, отстойник, карбюратор и воздушный фильтр.

Бензобак находится выше карбюратора, поэтому топливо поступает самотеком.

Уровень масла в картере определяется специальным щупом. Охлаждение двигателя водяное. Радиатор размещен с задней стороны двигателя, водяной насос — с передней стороны. Вода, которая двигается по трубкам радиатора, остывает при помощи воздушного потока от вентилятора.

Принцип работы карбюраторного двигателя

Принцип действия карбюраторного двигателя относительно простой и складывается из четырех тактов, которые совпадают с движением вверх и вниз в последовательности один за одним:

  • Первый такт — впуск; клапан впуска отворяется и в цилиндр доставляется новая смесь от системы питания.
  • Второй такт — сжатие; поршень сдавливает горючую смесь в камере сгорания. Все клапаны прикрыты.
  • Третий такт — расширение; происходит возгорание сдавленной горючей смеси от свечи зажигания. Смесь сжигается достаточно быстро при неизменном объеме, который соответствует объему самой камеры сжатия. Это основная характерность работы карбюраторного двигателя. При перегорании формируются газы, которые двигают поршень книзу и передают движение коленвалу.
  • Четвертый такт — впрыск; коленвал вращается и выбрасывает из цилиндра отработанные газы через приоткрытый клапан выпуска.

На этом один рабочий цикл карбюраторного двигателя заканчивается.

При первом такте клапан впуска уже в открытом виде при подходе поршня и благодаря высокой скорости движения поршня рабочая смесь продвигается к цилиндру и еще какое-то время при поднятии поршня во втором такте.

Искра поджигает рабочую смесь до того, как в цилиндре образуется высокое давление. В четвертом такте клапан выпускает отработанные испарения, чем очищает цилиндр еще до подхода поршня. Однако выход газов не прекращается даже после подхода поршня. Затем происходит запуск новой порции рабочей смеси, которая опять проходит в цилиндр.

Отсюда следует, что в работе между первым и четвертым тактом единовременно открываются клапаны впуска и выпуска, то есть происходит перекрытие клапанов. За момент перекрытия цилиндр очищается и в нем происходит разрежение, которое помогает выгоднее заполнить цилиндр горючей смесью при первом такте.

В таком двигателе происходит наружное образование рабочей смеси с ее сжатием и вынужденным поджиганием. На сегодняшний день как топливо чаще используется бензин, но они могут отлично выполнять свою работу и на газу.

Также популярны дизельные двигатели, где поджигание происходит от сжатия, их принцип работы зависит от нагревания газа при сжатии. Когда сжатие повышается, температура также поднимается. В это время в камеру сгорания через форсунку происходит впрыск топлива, которое поджигается и от полученных газов поршень передвигается. Сгорание топлива происходит после начала движения поршня.

Выше указан принцип работы одноцилиндрового двигателя, но он не способен создать условия непрерывного вращения с одинаковой скоростью. Расширенные газы оказывают действие на коленвал для его 1/4 части оборота, оставшиеся ¾ оборота движения поршня происходят по инерции.

Для ликвидации такой недоработки двигатели делают многоцилиндровыми, что способствует наиболее равномерному вращению и неизменному крутящему моменту.

Характеристики карбюраторного двигателя

Работа двигателя определяется его мощностью, действенным давлением, крутящим моментом, скоростью и частотой вращения коленчатого вала и потребление топлива.

Мощность карбюраторного двигателя, а также его крутящий момент подчиняются скорости вращения коленвала и высоты давления.

Скоростная характеристика карбюраторного двигателя устанавливается наивысшей мощностью, которую реально получить от давления при разной частоте вращения коленвала.

При небольшой скорости движения коленчатого вала давление в цилиндрах невысокое и мощность двигателя, соответственно, тоже небольшая. При ускорении вращения коленвала и давление поднимается, так как горючая смесь сгорает быстрее.

Потребление топлива увеличивается при небольшой частоте вращения коленчатого вала, так как процесс сгорания проходит медленнее, теплоотдача большая, а при увеличении частоты вращения механические и тепловые затраты увеличиваются.

Скоростная характеристика дизельного двигателя определяется при недвижимой рейке топливного насоса, который дает высокую подачу топлива на конкретном режиме скорости и бездымной эксплуатации.

При заведенном двигателе автомобиля количество вращений коленвала меняется. Если беспричинно увеличивается потребление топлива, то происходит это благодаря ухудшению рабочего процесса двигателя.

Управление карбюратором

Как правило, действиями карбюратора руководит водитель автомобиля. На отдельных моделях карбюраторов применялись вспомогательные системы, которые немного автоматизировали управление карбюратором.

Для того чтобы управлять дроссельной заслонкой наиболее часто пользуются педалью газа, которая обуславливает ее подвижность при содействии системы тяг либо тросового привода. Тяга, как правило, лучше, однако механизм привода куда сложнее и сдерживает способность механизма по компоновке подкапотной площади. Привод тягами был популярен до 1970 года, потом стали чаще использоваться тросики из металла.

На старых машинах чаще предполагалась двойная система привода дроссельной заслонки карбюратора: вручную рычагом либо от ноги, при помощи педали. Если надавливать на педаль, то рычаг не двигается, а если перемещать рычаг, то педаль опускается.

Последующее открытие дросселя можно совершать педалью. Когда педаль опускается — дроссель остается в таком же положении, в котором зафиксировался при управлении рукой. К примеру, на «Волге» ГАЗ-21 на панели приборов был размещен рычаг для управления рукой, при его движении можно достичь постоянного функционирования холодного двигателя без действия воздушной заслонки либо применять «постоянный газ». На грузовиках «постоянный газ» применялся для облегчения передвижения задним ходом.

Воздушная заслонка может быть оснащена механическим либо автоматическим приводом. Если привод механический, то водитель закрывает ее при участии рычага. Автоматический привод очень популярен в других странах, а в России не «прижился» из-за своей ненадежности и недолгим сроком службы.

Регулировки карбюратора

Карбюратор — устройство, которое имеет наименьшее количество регулировок, но нуждается в хорошо отлаженной системе. Неорганизованная эксплуатация карбюратора сильно действует на функциональность двигателя в целом. При плохой регулировке карбюратора снижается экономичность двигателя и повышается токсичность отработанного газа.

Подходящие виды регулирования карбюратора:

  • “Винт количества” — функционирование на холостом ходу;
  • “Винт качества” — насыщенность рабочей смеси (как результат, повышение токсичности выхлопных газов) на холостом ходу.

В период использования нужно прослеживать дееспособность нижеуказанных узлов:

  1. Действие клапана и схема холостого хода.
  2. Работа насоса (запаздывание действия, объем и время впрыска бензина).
  3. Размеренность работы, беспрепятственное движение, возврат пружиной и нужная степень открытия дроссельной заслонки.
  4. Действие холодного запуска (закрывание воздушной и степень открывания дроссельной и воздушной заслонок)
  5. Деятельность поплавковой конструкции (необходимое количество топлива в поплавковой камере, непроницаемость клапана).
  6. Пропускная возможность жиклеров.

На работоспособность карбюратора воздействуют:

  • Система регулирования карбюратора.
  • Установка пропуска воздуха (воздушный фильтр, обогрев воздуха).
  • Система подачи топлива (бензонасос, фильтры, заборники).
  • Трубка для слива излишков бензина.
  • Непроницаемость впускного канала, который расположен за карбюратором.
  • Нарушение клапанного устройства.
  • Качество топлива.

Карбюраторный двигатель внутреннего сгорания

Принцип действия карбюраторного двигателя основан на преобразовании тепловой энергии, выделяющейся при сгорании топлива внутри цилиндра с подвижным торцом-поршнем» в механическую работу. Цилиндр с одного конца открыт, с другого заканчивается герметичной камерой сгорания. Возвратно-поступательное движение поршня вдоль внутренней поверхности цилиндра как по направляющей вызывает вращение коленчатого вала, который через шатун связан с поршнем. На поршень действуют силы давления горячих расширяющихся газов, которые образуются а камере сгорания при воспламенении в ней паров топлива. Через поршень и шатун вращение передается массивному коленчатому валу. Он продолжает вращаться по инерции и после того, как силы давления уже не действуют. Поршень движется за счет накопленной коленчатым валом энергии до тех пор, пока снова не начнут действовать силы давления расширяющихся газов. При периодическом действии этих сил коленчатый вал вращается непрерывно.

В карбюраторном двигателе в качестве топлива используют бензин. В цилиндр поступает горючая смесь, приготовленная в карбюраторе из мелкораспыленного бензина и воздуха. В камере сгорания горючая смесь вместе с остатками отработавших газов образует рабочую смесь, которая сжимается поршнем и воспламеняется электрической искрой, проскакивающей между электродами свечи зажигания. Удаление отработавших газов и заполнение цилиндра горючей смесью называют процессом газообмена.

Основные понятия рабочего процесса двига­теля. Положение поршня в цилиндре характеризуют двумя крайними точками, в которых поршень «замирает» перед тем, как изменить направление движения: верхней мертвой точкой (ВМТ) и нижней мертвой точкой (НМТ). Расстояние между мертвыми точками называют ходом поршня. Каждому ходу поршня соответствует поворот коленчатого вала на пол-оборота, за полный оборот поршень делает два хода. Процесс, происходящий в цилиндре во время одного хода поршня, называют тактом.

В связи с возвратно-поступательным движением поршня сгорание топлива в двигателе возможно лишь отдельными порциями, причем сгоранию каждой порции должен предшествовать ряд подготовительных процессов. Совокупность процессов, которые сопровождают сгорание отдельной порции топлива, называют рабочим циклом двигателя. Во время работы двигателя рабочие циклы периодически повторяются.

Если рабочий цикл выполняется за четыре такта, двигатель называют четырехтактным, если за два — двухтактным.Однако из-за меньшей длительности двухтактного рабочего цикла усложняется процесс газообмена.

Рабочий цикл четырехтактного двигателя. Состоит из тактов впуска, сжатия, рабочего хода (сгорания-расширения) и выпуска (рис. 1).

Рис. 1. Рабочий цикл четырехтактного двигателя:

аj — впуск; бсжатие;в — рабочий ход; г — выпуск; 1, 2 — впускной и выпускной клапаны.

Впуск рабочей смеси и выпуск отработавших газов производится с помощью впускного и выпускного клапанов, работой которых управляет специальный механизм, связанный с коленчатым валом.

На такте впуска горючей смеси поршень движется от ВМТ к НМТ. Впускной клапан открыт, выпускной — закрыт. Под действием разрежения, которое образуется над поршнем, в цилиндр поступает приготовленная карбюратором горючая смесь.

На такте сжатия горючей смеси поршень движется от НМТ к ВМТ. Оба клапана закрыты. По мере движения поршня образованная рабочая смесь сжимается, в цилиндре растут давление и температура.

На такте рабочего хода поршень движется под действием расширяющихся газов, которые образуются в результате воспламенения рабочей смеси, сжатой в камере сгорания. Оба клапана по-прежнему закрыты.

На такте выпуска отработавших газов открыт выпускной клапан, и поршень движется от НМТ к ВМТ. Газы, обладая все еще большим запасом энергии (высокими давлением и температурой), устремляются из цилиндра. Этому помогает поршень, выталки­вая их.

В рабочем цикле четырехтактного двигателя процесс газообмена занимает два отдельных такта: впуска и выпуска. Во время этих тактов поршень в цилиндре работает как воздушный насос. Рис 1-1

Рис.1-1

Принцип действия и конструкция двигателей

Практически все отечественные подвесные моторы снабжены двигателями, работающими по двухтактной схеме. Проследим, как совершается рабочий цикл в двухтактном двигателе.

Читайте также  Принцип работы делителя КПП Камаз

При движении поршня вверх от НМТ (нижней мертвой точки) в картере двигателя увеличивается разрежение и через впускное окно, расположенное в средней части картера, всасывается бензо-воздушная смесь происходит впуск (рис.2). Достигнув верхней мертвой точки (ВМТ), поршень направляется вниз. Смесь в картере начинает сжиматься.

Рис. 2. Схема работы двухтактного двигателя

I — впуск горючей смеси в картер; II — сжатие в цилиндре; III — сжатие в картере; IV — рабочий ход; V — выпуск и продувка в цилиндре; VI — окончание сжатия в картере

Так как к этому моменту впускное окно уже перекрыто (механизм управления впуском описан ниже). Когда верхняя кромка поршня дойдет до выпускного окна, камера сгорания соединится с атмосферой (однако выпуска не произойдет, потому что воспламенения смеси еще не было). Двигаясь дальше, верхняя кромка поршня открывает продувочное окно и смесь, предварительно сжатая в картере, устремляется в камеру сгорания.

После прохождения НМТ поршень снова движется вверх. В картере под поршнем начинается процесс формирования нового заряда для продувки, а в камере сгорания смесь в это время сжимается. Поршень, двигаясь вверх, перекрывает сначала продувочные окна, а затем выпускные окна — продувка заканчивается и начинается сжатие (рис. 2, II). В момент подхода поршня к ВМТ в запальной свече возникает искра, топливо воспламеняется и возросшее давление толкает поршень вниз — происходит рабочий ход (рис. 2, IV). Выпускные окна открываются — начинается выпуск, давление в камере сгорания падает. Отработанные газы улетают через выпускное окно в атмосферу, а после открытия продувочных окон поступающая через них свежая смесь выталкивает остатки отработанных газов — происходит продувка.

| следующая лекция ==>
|

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Принцип действия карбюраторного двигателя

Весь рабочий процесс четырехкратного двигателя состоит из четырех тактов, соответствующих четырем ходам поршня вверх и вниз. Рабочие такты следуют один за другим:

1-й такт — впуск: поршень, идущий от в. м. т. к н. м. т., создает в цилиндре разрежение; впускной клапан открыт; в цилиндр поступает свежая смесь из системы питания.

2-й такт — сжатие: поршень, идущий к в. м. т., сжимает рабочую смесь в камере сгорания; при этом впускной и выпускной клапаны закрыты.

Рекламные предложения на основе ваших интересов:

3-й такт — расширение (рабочий): при положении поршня в в. м. т. искра от свечи зажигания воспламеняет сжатую рабочую смесь. Смесь сгорает очень быстро (практически при неподвижном поршне), находящемся в в. м. т. Сгорание рабочей смеси происходит при постоянном объеме, равном объему камеры сжатия. Это является характерной особенностью карбюраторных двигателей. При сгорании смеси образуются газы, которые, расширяясь, перемещают поршень вниз в направлении н. м. т. и через шатун передают вращение коленчатому валу.

4-й такт — впрыск: при дальнейшем вращении коленчатого вала поршень, идущий к в. м. т., выталкивает из цилиндра отработавшие газы через кольцевой зазор, образовавшийся между седлом и приподнятым выпускным клапаном.

Рабочий цикл окончен. Он состоял из четырех тактов и продолжался в течение двух оборотов коленчатого вала (720° ). Такие двигатели называются четырехтактными.

Из конструктивных соображений в первом такте впускной клапан целесообразно открывать до прихода поршня в в. м. т. Вследствие большой скорости поршня поток рабочей смеси, следуя за поршнем к н. м. т., приобретает значительную инерцию и продолжает поступать в цилиндр еще некоторое время во втором такте при движении поршня вверх.

Искра воспламеняет рабочую смесь до того, как поршень подойдет к в. м. т. Прежде чем в цилиндре возникнет максимальное давление, поршень успеет достигнуть в. м. т.

В четвертом такте для лучшего очищения цилиндра от отработавших газов выпускной клапан необходимо открывать до прихода поршня вн. м. т., чтобы ускорить очистку цилиндра от отработавших газов. Выпуск газов продолжается некоторое время после прихода поршня в в. м. т. и начала его движения к н. м. т. и завершается продувкой камеры сжатия свежей рабочей смесью, которая начинает в этот момент поступать в цилиндр. Таким образом в рабочем цикле между четвертым и первым тактами одновременно открываются впускной и выпускной клапаны (так называемое перекрытие клапанов). За время перекрытия выполняется продувка цилиндра. При этом в цилиндре создается некоторое разрежение, что способствует лучшему заполнению цилиндра рабочей смесью в первом такте.

Моменты открытия и закрытия клапанов, выраженные в градусах, соответствующих углам поворота коленчатого вала относительно мертвых точек, называются фазами газораспределения.

Рассмотренный четырехтактный двигатель имеет внешнее смесеобразование горючей смеси с предварительным ее сжатием и принудительным зажиганием. Такие двигатели называются карбюраторными. Для них используют легкое жидкое топливо — бензин. Карбюраторные двигатели могут работать также на газе.

Известны также двигатели с воспламенением от сжатия—дизе-л и, работающие на тяжелых сортах жидкого топлива (дизельное топливо). Принцип работы дизелей основан на известном физическом явлении -— нагревании газа при сжатии. Если, например, воздух сжать поршнем настолько, что степень сжатия будет выше, температура в цилиндре резко возрастет до 600—700 °С. В этот момент в камеру сгорания двигателя через специальный распыляющий прибор (форсунку) впрыскивают топливо, которое воспламеняется, и образующиеся при этом газы перемещают поршень. Сгорание топлива в таком двигателе происходит при переменном объеме после того, как поршень начал двигаться к н. м. т.

Выше был рассмотрен принцип действия одноцилиндрового двигателя внутреннего сгорания. Такой двигатель не может обеспечить на валу постоянный крутящий момент и, следовательно, постоянную скорость его вращения. Действительно, расширяющие газы действуют на коленчатый вал при повороте его на 180° (0,5 оборота); остальные 1,5 оборота коленчатый вал и кинематически связанные с ним шатун и поршень движутся по инерции.

Чтобы устранить этот недостаток, присущий одноцилиндровому двигателю, двигатели внутреннего сгорания выполняют многоцилиндровыми. Например, в двигателе ГАЗ -51 в один блок объединены шесть цилиндров, поршни которых действуют на общий коленчатый вал. Кривошипы коленчатого вала расположены друг относительно друга под углом 120°. Благодаря такому расположению кривошипов рабочие такты в двигателе чередуются через каждые 120° поворота коленчатого вала, обеспечивая достаточную равномерность вращения и практически постоянный крутящий момент.

Максимальный крутящий момент вала двигателя ГАЗ -51 при числе оборотов 2800 об/мин равен 20,5 кГм, что позволяет двигателю развить мощность 70 л. с. или 51464,9 вт (1 л. с. = 736,499 вт).

Карбюраторный двигатель: принцип работы, устройство и регулировка

Карбюраторный двигатель — один из типов двигателя внутреннего сгорания с внешним смесеобразованием.

В карбюраторном двигателе топливно-воздушная смесь, поступающая по впускному коллектору в цилиндры двигателя, приготавливается в специальном приборе — карбюраторе.

Также карбюраторные двигатели разделяются на двигатели без наддува или атмосферные, у которых впуск воздуха или горючей смеси осуществляется за счет разряжения в цилиндре при всасывающем ходе поршня; двигатели с наддувом, у которых впуск воздуха или горючей смеси в рабочий цилиндр происходит под давлением, создаваемым турбокомпрессором, с целью увеличения заряда воздуха и получения повышенной мощности и КПД двигателя;

В качестве топлива для карбюраторного двигателя в разное время применялись спирт, керосин, лигроин, бензин. Наибольшее распространение получили бензиновые карбюраторные двигатели.

Карбюратор — устройство в системе питания карбюраторных двигателей внутреннего сгорания, предназначенное для смешивания бензина и воздуха, создания горючей смеси и регулирования её расхода. В настоящее время карбюраторные системы подачи топлива вытесняются инжекторными.

Простейший карбюратор состоит из четырёх основных элементов: поплавковой камеры (10) с поплавком (3), жиклёра (9) с распылителем (7), диффузора (6) и дроссельной заслонки (5).

Топливо по трубке (1) поступает из бака в поплавковую камеру (10). В поплавковой камере плавает пустотелый, обычно латунный поплавок (3), на который опирается запорная игла (2).

Когда уровень топлива в поплавковой камере достигнет необходимой высоты, поплавок всплывёт настолько, что заставит запорную иглу перекрыть трубку (1), прекращая подачу топлива в поплавковую камеру.

По мере расходования топлива его уровень в поплавковой камере понижается, поплавок опускается, и запорная игла снова открывает подачу топлива, таким образом в поплавковой камере поддерживается постоянный уровень топлива, что очень важно для правильной дозировки подачи топлива.

Из поплавковой камеры топливо поступает через жиклёр (9) в распылитель (7). Количество топлива, вытекающего из распылителя (7), зависит при прочих равных условиях от размеров и формы жиклёра.

При движении поршня в такте впуска давление в цилиндре снижается. При этом наружный воздух засасывается в цилиндр через карбюратор и впускной трубопровод, проходя через воздушную трубу (8) карбюратора, в которой находится диффузор (6).

В самой узкой части диффузора помещается конец распылителя. В сужающейся части диффузора скорость потока воздуха увеличивается, а давление воздуха уменьшается.

Благодаря отверстию (4) в поплавковой камере поддерживается атмосферное давление, в результате под влиянием разности давлений происходит истечение топлива из распылителя.

Топливо, вытекающее из распылителя, раздробляется струями воздуха, распыляется, частично испаряется и, перемешиваясь с воздухом, образует горючую смесь. Как правило, вместо одного диффузора используется двойной или даже тройной диффузор. Дополнительные диффузоры расположены концентрически в главном диффузоре и имеют небольшие размеры. Через них проходит только часть общего потока воздуха.

Вследствие высокой скорости в центральной части при небольшом сопротивлении основному потоку воздуха достигается более качественное приготовление горючей смеси.

Количество горючей смеси, поступающей в цилиндры двигателя, а следовательно, и мощность двигателя регулируется дроссельной заслонкой (5), которая обычно приводится в движение педалью акселератора (или ручным приводом у мотоциклов и некоторых автомобилей).

Управление карбюратором

Обычно работой карбюратора управляет водитель автомобиля. На некоторых моделях карбюраторов использовались дополнительные системы, частично автоматизировавшие управление им.

Для управления дроссельной заслонкой на автомобилях обычно используется педаль газа. Она может приводить её в движение при помощи системы тяг или тросового привода. Тяги в целом надёжнее, но конструкция привода получается сложнее и ограничивает возможности конструктора по компоновке подкапотного пространства.

Привод тягами широко использовался в прежние годы, но начиная с 1970-х годов получила распространение система с металлическим тросиком. Системы с пневмо- или электромеханическим приводом распространения на карбюраторных двигателях не получили.

На старых автомобилях часто предусматривалась двойная система привода дроссельной заслонки карбюратора: от руки, рычажком или вытяжной рукояткой («постоянный газ»), и от ноги — педалью. Ручное и ножное управления связывалось между собой так, что при нажатии на педаль рукоятка ручного управления остаётся неподвижной, а при её вытягивании педаль опускается.

Дальнейшее открытие дросселя можно было производить педалью. При отпускании педали дроссель остаётся в положении, установленном ручным управлением. Например, на «Волге» ГАЗ-21 на панели приборов справа от радиоприёмника была расположена рукоятка ручного управления дроссельной заслонкой, дублирующая педаль газа.

Вытянув её, можно было добиться устойчивой работы холодного двигателя без использования воздушной заслонки, или использовать для установления «постоянного газа». На грузовых автомобилях режим «постоянного газа» служил в частности для упрощения движения задним ходом.

Читайте также  Прицеп для мотоблока Салют 100

На мотоциклах и некотором числе автомобилей применяется ручное управление дросселем, осуществляемое специальной рукояткой на руле через тросик.

Воздушная заслонка может иметь механический или автоматический привод. В первом случае её закрывает водитель при помощи рукоятки, размещённой обычно на панели приборов. Автоматический привод широко применялся за границей, а в практике отечественного автопрома распространения практически не получил ввиду низкой надёжности, недолговечности и ненадёжной работы при характерных для климата большей части территории СССР/России больших перепадах температур.

В этом случае воздушную заслонку закрывал биметаллический или церезиновый термоэлемент, обогреваемый жидкостью из системы охлаждения.

По мере прогрева двигателя, термоэлемент нагревался, расширялся и открывал воздушную заслонку. В иных системах использовался электромеханический привод с датчиком температуры. Из отечественных автомобилей, такое пусковое устройство имели только карбюраторы отдельных моделей ВАЗ.

Очень широко распространён полуавтоматический привод воздушной заслонки. В этом случае она закрывается водителем вручную, а после пуска двигателя автоматически приоткрывается диафрагмой, работающей от возникающего во впускном коллекторе двигателя разрежения.

Это предотвращало возможную остановку двигателя из-за переобогащения рабочей смеси и несколько снижало расход топлива на прогрев.

Пусковую диафрагму имели практически все отечественные карбюраторы, разработанные после начала 1960-х годов. До этого некоторые модели использовали менее совершенный кулачковый механизм, немного приоткрывавший дроссельную заслонку при закрывании воздушной.

Регулировки карбюратора

Карбюратор — устройство, имеющее минимум регулировок, но требующее исправной работы узлов и механизмов. Работоспособность карбюратора и его техническое состояние существенно влияют на работу двигателя.

Нарушение регулировки карбюратора приводит к ухудшению экономичности, приёмистости двигателя, а также к увеличению токсичности отработавших газов.

Доступные регулировки самого карбюратора:

«Винт количества» — обороты в режиме холостого хода

«Винт качества» — обогащённость топливо воздушной смеси (и, как следствие, содержание токсичного угарного газа в выхлопных газах) в режиме холостого хода.

В процессе эксплуатации необходимо проверять и восстанавливать работоспособность следующих узлов:

работа клапана (герметичность) экономайзера и системы холостого хода

работа ускорительного насоса (задержка срабатывания, количество и время впрыска топлива, направленность топливного распылителя)

плавность работы, свободный ход, возвращение пружиной и необходимый уровень приоткрытия закрытой ДЗ

работу системы холодного запуска (закрытие воздушной, и приоткрытие дросельной и воздушной заслонок)

работу устройства открытия второй ДЗ (если имеется)

работу поплавкового механизма (уровень топлива в поплавковой камере, герметичность запорного клапана, отсутствие дефектов поплавка, и т.д.)

работу эмульсионных колодцев и распылителей, пропускная способность жиклёров

отсутствие неучтённых подсосов воздуха

Так же на работу карбюратора оказывают своё влияние:

механизмы управления карбюратором

устройство подачи воздуха (воздушный фильтр, система подогрева воздуха в холодное время года)

система подачи топлива (бензонасос, бензофильтры, заборник, топливные магистрали, вентиляция бака)

система вентиляции картера двигателя

сливная трубка избытка топлива, впускного коллектора

герметичность впускного тракта после карбюратора

негерметичность/неисправность клапанного механизма

Карбюраторный двигатель: устройство и принцип работы.

Горючая смесь и ее виды.

Горючая смесь представляет собой смесь паров бензина с воздухом. Попадая в цилиндры двигателя, горючая смесь смешивается с остаточными отработавшими газами и образует рабочую смесь.

В двигателях сгорание рабочей смеси происходит за тысячные доли секунды (0,002 — 0,003 с). Такое быстрое сгорание возможно при условии, если топливо будет находиться в парообразном состоянии в виде мельчайших частиц и для сгорания будет достаточное количество воздуха. В зависимости от массового соотношения бензина и воздуха различают следующие виды горючих смесей: нормальная, обогащенная, богатая, обедненная, бедная.

Нормальной называют смесь, в которой на 1 кг бензина приходится 15 кг воздуха (12 м 3 ). При такой смеси двигатель работает устойчиво и имеет средние показатели мощности и экономичности.

Обогащенная смесь содержит на 1 кг бензина 13 — 15 кг воздуха, скорость сгорания такой смеси возрастает, двигатель развивает большую мощность, но при этом повышается расход топлива.

Богатая смесь содержит на 1 кг бензина менее 13 кг воздуха, она горит медленно, мощность двигателя снижается, происходит большой перерасход топлива.

Обедненная смесь (1 : 15 — 16,5) обеспечивает полное сгорание топлива, мощность двигателя несколько снижается, но достигается наибольшая экономия топлива.

Бедная смесь содержит более 17 частей воздуха на одну часть бензина. Горит очень медленно, двигатель перегревается, расход топлива увеличивается, а мощность значительно падает.

Процесс приготовления горючей смеси называется карбюрацией, а прибор, приготовляющий смесь, — карбюратором. http://aboutavtobus.ru/ustrojstvo-i-rabota-karbyuratora.html

Простейший карбюратор состоит из поплавков и смесительной камер. В поплавковой камере помещается латунный поплавок , укрепленный шарнирно на оси , и игольчатый клапан . В смесительной камере расположен диффузор, жиклер с распылителем и дроссельная заслонка. Жиклер представляет собой пропускную способность топлива.

При работе двигателя, когда поршень движется вниз и впускной клапан открыт, в цилиндре, впускном трубопроводе и смесительной камере карбюратора создается разрежение, под действием которого из распылителя вытекает топливо со скоростью от 2 до 6 м/с. Одновременно через смесительную камеру проходит поток воздуха, скорость которого в суженной части диффузора достигает 50—150 м/с.

Вследствие большой скорости воздуха от его ударов капельки топлива постепенно размельчаются, превращаются в пары и, смешиваясь с воздухом, образуют горючую смесь. По мере расхода топлива поплавок опускается, игольчатый клапан открывает отверстие и топливо начинает снова наполнять поплавковую камеру. Таким образом будет поддерживаться постоянный уровень топлива в поплавковой мере и в распылителе, в котором он при неработающем двигателе должен быть на 1—1,5 мм ниже верхнего края распылителя.

Простейший карбюратор не обеспечивает требуемого изменения состава горючей смеси при переходе от одного режима работы двигателя к другому. Так, при переходе от малых нагрузок к средним вместо обеднения он обогащает смесь. Кроме того, у него нет приспособлений, с помощью которых можно обогатить смесь при пуске холодного двигателя, при больших нагрузках, во время разгона автомобиля, а также он не обеспечивает устойчивой работы двигателя при малой частоте вращения коленчатого вала. Поэтому на двигателях устанавливают более сложные карбюраторы, обеспечивающие приготовление смеси нужного состава на всех режимах. Это достигается наличием в карбюраторе необходимых устройств и систем: главной дозирующей системы, системы пуска, системы холостого хода, экономайзера и ускорительного насоса.

Главная дозирующая система состоит топливного жиклерас распылителем и воздушного жиклера.

При работе карбюраторного двигателя во время такта впуска в смесительной камере над распылителем создается разрежение. Под действием разложения, которое увеличивается по мере увеличения открытия дросселя, топливо поступает через жиклер в распылитель и в смесительную камеру. При увеличении разрежения в диффузоре через воздушный жиклер в распылитель поступает воздух. Чем больше разрежение, тем больше прибавляется воздуха. Таким образом, воздушный жиклер притормаживает истечение топлива из главного жиклера под действием увеличивающегося разрежения и этим обеспечивает получение экономичной смеси постоянного обедненного состава независимо от увеличения разрежения в диффузоре при увеличении открытия дроссельных заслонок. При одновременной работе с другими системами главная дозирующая система приготавливает обогащенную и богатую смеси.

Система холостого хода обеспечивает приготовление обогащенной смеси при работе прогретого двигателя при малой частоте вращения коленчатого вала. На данном режиме происходит плохая очистка цилиндров от остаточных газов, которые препятствуют распространению пламени в цилиндре. И хотя эффективная мощность в режиме холостого хода равна нулю, смесь обогащают для ускорения горения и обеспечения бесперебойной работы двигателя. При работе двигателя при малой частоте вращения коленчатого вала воздушная заслонка карбюратора открыта, а дроссельная прикрыта, разрежение в диффузоре незначительно и главная дозирующая система не работает. Разрежение создается ниже дроссельной заслонки, и топливо через жиклер главной дозирующей системы поступает к топливному жиклеру холостого хода. Пройдя этот жиклер, смешивается с воздухом, поступающим через первый воздушный жиклер, и образует эмульсию (пенистую смесь топлива с пузырьками воздуха). Полученная эмульсия попадает в эмульсионный канал, затем выходит через нижнее распыливающее отверстиев задроссельное пространство. При открытии на небольшой угол дроссельной заслонки эмульсия будет поступать и через верхнее распиливающее отверстие. Наличие двух выходных отверстий в системе холостого хода обеспечивает плавный переход от холостого хода к средним и большим на грузкам.

Экономайзер с механическим приводом состоит из жиклера и колодца, в котором помещается игольчатый клана. Привод экономайзера осуществляется от дроссельной заслонки при помощи рычага и тяги с планкой и штока. По мере открытия дроссельной заслонки приводной рычаг поворачивается и перемещает тягу, которая через планку опускает шток 3 с иглой вниз. При открытии дроссельной заслонки более чем на 85% шток открывает клапан и из колодца через жиклер начинает поступать дополнительное топливо в распылитель, т. е. к топливу, поступающему через жиклер, добавляется еще топливо, проходящее через открытый клапан экономайзера.

Количество топлива, поступающего в смесительную камеру, ограничивается жиклером экономайзера, пропускная способность которого рассчитана на приготовление обогащенной смеси для получения максимальной мощности.

Насос — ускоритель служит для временного обогащения горючей смеси при резком открытии дроссельной заслонки, что улучшает приемистость автомобиля (ускоряет разгон). Насос — ускоритель часто объединяют с экономайзером. При резком открытии дроссельной заслонки под действием рычага, тяги и планки привода поршень в колодце быстро перемещается вниз. Обратный клапан вследствие возникающего давления топлива закрывается, а нагнетательный клапан открывается, и порция топлива через распылитель впрыскивается в смесительную камеру, обогащая горючую смесь.

Система пуска служит для обогащения горючей смеси при пуске и прогреве холодного двигателя. При пуске холодного двигателя происходит недостаточное испарение топлива, а бензин в капельном состоянии в горении не участвует. Поэтому на период пуска и прогрева двигателя необходимо обеспечить богатую горючую смесь, что достигается закрытием воздушной заслонки карбюратора путем вытягивания кнопки на щитке приборов. При этом значительное увеличение разрежения в смесительной камере вызывает усиленное истечение топлива из главной дозирующей системы и системы холостого хода. Для предупреждения переобогащения горючей смеси на воздушной заслонке устанавливают автоматический клапан с пружиной, который при закрытой воздушной заслонке под действием разрежения в смесительной камере открывается и пропускает некоторое количество воздуха.

Устройство карбюраторного двигателя

Система питания служит для хранения, запаса, подачи и очистки топлива, очистки воздуха, приготовления горючей смеси нужного состава и отвода наружу продуктов сгорания.

В систему питания карбюраторного двигателя входят: топливный бак, топливопроводы, топливные фильтры, топливный насос, воздушный фильтр, карбюратор и впускной трубопровод. К системе питания относят также выпускной трубопровод двигателя и глушитель.

Запас топлива для работы двигателя хранится в топливном баке, из которого топливо подается к карбюратору топливным насосом по топливопроводам. Фильтр-отстойник очищает топливо от механических примесей и отделяет случайно попавшую в него воду. Воздушный фильтр очищает от пыли поступающий в карбюратор атмосферный воздух. Карбюратор приготовляет горючую смесь, которая по впускному трубопроводу поступает в цилиндры. Выпускной трубопровод отводит из цилиндров отработавшие газы. Глушитель снижает температуру отработавших газов и уменьшает шум при выходе в атмосферу.