Регулирование современных систем охлаждения двигателей внутреннего сгорания

Регулирование современных систем охлаждения двигателей внутреннего сгорания

Опыт эксплуатации двигателей внутреннего сгорания и специ­ально поставленные исследования показали, что температура в системе охлаждения двигателя существенно влияет как на ос­новные эффективные показатели его работы (мощность, экономич­ность), так и на интенсивность износа трущихся поверхностей.

В формуле, определяющей эффективную мощность двигателя:

постоянный коэффициент D N практически не зависит от темпера­туры Т охлаждающей воды. Поэтому наибольшее значение эф­фективной мощности при прочих равных условиях соответствует наибольшим значениям произведения ? V ? M * ? i / ? для выбранного скоростного режима ?.

По мере увеличения температуры Т в системе охлаждения уменьшается количество теплоты, отдаваемой рабочими газами в систему охлаждения. Однако основная часть оставшейся теп­лоты в цилиндре (85—90%) расходуется на подогрев его стенок и лишь 10—15% идет на увеличение полезной работы. Поэтому с ростом температуры охлаждающей воды происходит весьма незначительное повышение индикаторного КПД двигателя ? i . Одновременно с этим возрастание температуры стенок цилиндра приводит к увеличению подогрева свежего заряда, уменьшению его плотности, а следовательно, и к уменьшению коэффициента наполнения ? ? и к незначительному снижению коэффициента избытка воздуха ?.

Одновременно с этим увеличение Т вызывает уменьшение вязкости смазывающего масла, что способствует уменьшению потерь на трение и увеличение механического КПД двигателя ? м .

Суммарное влияние всех названных факторов по мере роста Т дает некоторое снижение индикаторной мощности N i и увеличе­ние эффективной мощности N е , так как интенсивность увеличе­ния ? м выше интенсивности падения N i .

При прочих равных условиях эффективная мощность дости­гает своего наибольшего значения при температуре в системе охлаждения около 348 К и почти не изменяется до 358 К. Дальнейшее увеличение температуры в системе охлаждения может вызвать некоторое снижение N е из-за ухудшения условий смазки трущихся поверхностей.

Экономичность работы двигателя определяется значением удельного эффективного расхода топлива g e Если учесть тенден­ции изменения ? i и ? м по мере увеличения температуры Т в си­стеме охлаждения, то нетрудно установить, что при увеличении Т удельный индикаторный расход топлива g i постепенно увеличи­вается, в то время как удельный эффективный расход топлива g е снижается и достигает своего минимального значения в интервале температур от 348 до 358 К.

Изменения эффективной мощности двигателя и удельного эф­фективного расхода топлива в зависимости от температуры в си­стеме охлаждения идентичны в двигателях различных типов, габаритных размеров и назначения.

Сказанное свидетельствует о том, что температуру в системе охлаждения двигателя целесообразно при всех режимах его работы поддерживать на одном и том же уровне в интервале тем­ператур от 348 до 358 К.

Однако температурный режим работы системы охлаждения двигателя необходимо выбирать не только на основе получения наивыгоднейших его эффективных показателей, но и на основе обеспечения заданного моторесурса, а это значит, что нужно установить такие условия работы, при которых износ трущихся поверхностей оказывался бы минимальным.

Для выяснения такого теплового режима работы двигателя были поставлены специальные экспериментальные исследования, которые показали,, что по мере роста температуры охлаждающей воды до 343 К степень износа резко снижается, затем интенсивность ее падения уменьшается, и после 348 К снижение степени износа становится несущественным.

С позиций получения минимальной степени износа трущихся поверхностей температуру в системе охлаждения необходимо поддерживать также в пределах 348—358 К вне зависимости от режима работы, типа и назначения двигателя (ГОСТ 12709—67). Следовательно, интервал температур 348—358 К в системе охлаждения двигателя является наивыгоднейшим, и необходимо стремиться к тому, чтобы поддерживать температуру в системе охлаждения двигателя в этом интервале при всех возможных ре­жимах работы двигателя.

Однако свойства двигателя как регулируемого объекта по температуре охлаждения таковы, что названный диапазон темпе­ратур поддерживаться в процессе эксплуатации практически не может без регулирующего воздействия на систему охлаждения. В связи с этим большинство двигателей внутреннего сгорания, работающих в широком диапазоне скоростных и нагрузочных режимов, снабжают однорежимными автоматическими регуля­торами температуры различной сложности по конструкции в за­висимости от требования точности поддержания заданного тепло­вого режима (348—358 К).

В некоторых случаях поддержание температуры охлажда­ющей воды двигателя в интервале 348—358 К оказывается либо недопустимым, либо нецелесообразным. Например, в проточных системах судовых двигателей поддержание температуры воды в зарубашечном объеме двигателя на уровне 348—358 К недо­пустимо из-за интенсивного отложения накипи и, следовательно, быстрого снижения теплоотводящих способностей поверхностей теплопередачи. Поэтому в таких двигателях создают системы ох­лаждения, обеспечивающие температуру воды на выходе не выше 328 К- В этом случае также устанавливают однорежимные авто­матические терморегуляторы, которые работают в интервале тем­ператур от 318 до 328 К (ГОСТ 12709—67).

В тепловозных теплосиловых установках с дизелями выбор температуры охлаждающей воды существенно влияет на размеры холодильных секций и, следовательно, на размеры всей установки в целом. Этим обусловливается использование в ряде случаев замкнутых систем высокотемпературного охлаждения. Система охлаждения в этом случае должна быть оборудована специальным паровоздушным клапаном, поддерживающим в системе охлажде­ния повышенное давление (0,12—0,13 МПа), при котором тем­пература охлаждающей воды увеличивается до 378 К. Это поз­воляет сократить размеры холодильной установки за счет уве­личения интенсивности теплоотдачи в окружающую среду. Сле­довательно, и в этих случаях система охлаждения двигателя дол­жна быть оборудована однорежимным автоматическим регуля­тором температуры с настройкой его на заданный уровень тем­пературы.

Современные системы охлаждения: концепции и воплощение

Научно-технический прогресс не стоит на месте, тем более в такой конкурентоемкой отрасли, как автомобилестроение. При изготовлении узлов и механизмов применяются новые технологии и материалы, дабы соответствовать уже современным реалиям, растет мощность, эффективность и, соответственно, требования.

Система охлаждения за последнее десятилетие с точки зрения конструкции и применяемых материалов вполне устоялась, во всяком случае, в области материалов. Чего-то революционного, обладающего сверхспособностями по передаче тепла, пока не изобрели, как и соответствующих рабочих жидкостей. Но на данном этапе этого и не требуется: конструкция механической части системы охлаждения всех устраивает, вернее, удовлетворяет, поскольку позволяет справиться со всеми возложенными на нее задачами.

Технология алюминиевой пайки Nocolok дала возможность создавать радиаторы любого размера и формы, кроме того, в отличие от сборных конструкций, которые присутствовали на рынке раньше, у цельнопаяных радиаторов долгий срок службы, и они не теряют эффективности в процессе эксплуатации. Форма трубок охлаждения также устоялась — плоскоовальное сечение интереснее как с точки зрения аэродинамики, так и с точки зрения гидравлики: потери меньше. В зависимости от технических требований можно сделать радиатор толще/тоньше, больше/меньше — для этого теперь не требуется особых усилий. Если раньше в России и странах Таможенного союза бóльшую долю в автомаркете занимала импортная продукция вроде Behr и Nissens, то теперь компания Luzar, например, выпускает целый спектр компонентов систем охлаждения, причем перспективная часть продукции сертифицирована по TUV и, соответственно, включена в глобальную европейскую базу по автокомпонентам TecDoc.

С рабочей жидкостью вопрос тоже со временем закрылся — все перешли на этиленгликоль с соответствующими антикоррозионными присадками: для авто попроще — G11, для машин поновее и посовременнее — G12. G13 — это полипропиленгликоль плюс присадки, он неядовитый, лучше разлагается, сделан с оглядкой на экологов, но у нас пока не выпускается. Вообще в обозначениях антифризов наблюдается некоторый бардак, особенно в связи с их окраской, когда разные производители подкрашивают одинаковую по составу жидкость в разные цвета. Однако разобраться при желании можно: технические требования по применяемости антифризов в легковых автомобилях и легких грузовиках регламентирует документ под названием ASTM D 3306. В общем, и с жидкостями определились, неужели ничего нельзя улучшить?

Можно улучшить, даже нужно, ну а если говорить прямо, уместнее здесь будет слово «придется». Естественно, прогресс не стоит на месте, само собой, удельные мощности растут, а агрегаты становятся сложнее и прецизионнее. Но есть еще один момент — нормы токсичности, с которыми как-то приходится работать каждому автопроизводителю. Не будем сейчас говорить о том, насколько оправданны столь жесткие требования, кивать на чадящие теплоэлектростанции, окружающие любой крупный город, океанские суда и нефтедобывающие платформы. Нормы Евро-6 уже приняты, и тут ничего не попишешь, остается только соответствовать.

Эффективность и, естественно, экологичность любого ДВС определяется в том числе и температурным режимом. Причем несколько лишних градусов в плюс или в минус могут здорово подпортить картину в целом, а сейчас, когда удельная мощность моторов, причем даже атмосферных, крутится вокруг отметки 100 л. с./литр, а АКПП имеют по девять передач, температурные допуски существенно ужесточаются.

Из ДВС выжали все, что получилось на данном этапе: прямой впрыск, фазовращатели, катализаторы, даунсайзинг и турбины с изменяемой геометрией. Для дизелей ныне безальтернативна система впрыска Common Rail даже при жестких условиях эксплуатации, фильтры с мочевиной и тому подобные реверансы в сторону экологов. Коробки передач все увеличивают количество передач, зачастую вопреки здравому смыслу, лишь бы уложиться в нормы токсичности. В этом смысле экологическое лобби неизменно напоминает одного деятеля стародавних времен — Прокруста.

Но кое с чем еще можно поработать, и речь как раз о системе охлаждения в целом. Не то чтобы модернизация оной — некое суперсовременное откровение, нет, прорывы были и раньше, вспомнить хотя бы мощные автомобили прошлого с классическим турбонаддувом. Развод единой системы на несколько контуров объяснялся когда-то не стремлением к чистоте выхлопа, а желанием обеспечить максимальную производительность силового агрегата.

Началось все с модернизации термостата: при достижении определенной температуры в рубашке охлаждения открывался один клапан, при дальнейшем повышении температуры охлаждающей жидкости (ОЖ) — второй, максимальной производительности. Это позволяло двигателю быстрее выходить на рабочие режимы. Ну а потом к стандартной рубашке охлаждения добавили еще одну — для охлаждения турбины, ведь наддувный воздух для повышения мощности ДВС также необходимо охлаждать, верно?

А так как оптимальный режим для радиатора двигателя и интеркулера сильно разнится, появилось два практически независимых контура, использующих, правда, один расширительный бачок. Дальше — больше, выяснилось, что оптимальная температура для головки блока — 87–90 градусов, при ее повышении вероятна детонация, а для самого блока лучше и побольше — 105 градусов как раз то, что нужно. Поэтому систему охлаждения самого мотора еще раз разделили, не давая перемешиваться охлаждающей жидкости в процессе охлаждения клапанов.

Стоит учесть, что высокофорсированные ДВС, а именно таких сейчас большинство на всех типах автомобилей, кроме бюджетных, охлаждаются еще и маслом, которое в процессе работы сильно нагревается. Рецепт борьбы с этим явлением давно известен — масляный радиатор. Вот только когда за бортом серьезный минус, этот радиатор выполняет скорее отрицательную роль — мешает мотору прогреваться.

Почему бы не поставить и на масляную систему термостат? И потом, температуру воздуха, попадающего в двигатель, тоже лучше бы проконтролировать для снижения потребления топлива и минимизации вредных выбросов. А система рециркуляции отработавших газов? А как охладить/нагреть коробку до нужной температуры? В общем, контуров охлаждения необходима масса, если мы, конечно, хотим двигаться в поступательном направлении, снижать энергопотребление и выполнять строгие нормы токсичности. Только как управлять всей этой кучей термостатов и как быть, если что-то выйдет из строя?

Читайте также  Как правильно эксплуатировать дизельный двигатель с турбиной?

Все, оказывается, давно продумано и находит повсеместное применение. В современных автомобилях по три-четыре термостата, в перспективных моделях — и вовсе шесть, а управлять всем этим многообразием приходится централизованно, через головной блок управления: именно так достигается максимальная эффективность процессов нагрева / поддержания нужного режима. Теплоемкости и текучести ОЖ, масла и ATF совершенно разные, к тому же есть такой момент, как инерционность системы в целом: за одно мгновение температуру рабочей жидкости не изменить, нужно определенное время — для каждого узла, естественно, свое. В общем, алгоритмы поддержания процесса охлаждения в оптимальном режиме не такие уж простые.

А сами исполнительные механизмы — термостаты — представляют собой электронноуправляемый клапан, открывающийся/закрывающийся по команде «из центра». Общепризнанный лидер в производстве современных термостатов — французская компания Vernet, которая обеспечивает потребности производителей не только во Франции, поставляя свою продукцию Volkswagen Group, Volvo, MAN, DAF.

Каков итог?

Альтернативных путей развития у систем охлаждения, похоже, нет, поэтому автопроизводители в массовом порядке переходят на централизованное управление рабочими температурами. Безусловно, новые технологии и разработки увеличивают стоимость конечного продукта, да и на автомаркете она стоят недешево: например, электронноуправляемый термостат обходится потребителю примерно в десять раз дороже. Отрадно то, что надежность этой детали на очень высоком уровне: наработка на отказ в среднем 250 000 км.

Собственно, в этом векторе развития не видится ничего парадоксального — центральный блок управления автомобиля уже сложно назвать «мозгами» двигателя, вполне возможно, что в скором времени его нагрузят еще какими-то дополнительным функционалом, а каким именно — покажет время и тенденции развития автомобильной техники.

Назначение, классификация и схемы систем охлаждения, регулирование теплового режима двигателей. Низкозамерзающие охлаждающие жидкости.

Назначение, классификация и схемы систем охлаждения, регулирование теплового режима двигателей. Низкозамерзающие охлаждающие жидкости.

Система охлаждения предназначена для охлаждения деталей двигателя, нагреваемых в результате его работы. На современных автомобилях система охлаждения, помимо основной функции, выполняет ряд других функций, в том числе:

· нагрев воздуха в системе отопления, вентиляции и кондиционирования;

· охлаждение масла в системе смазки;

· охлаждение отработавших газов в системе рециркуляции отработавших газов;

· охлаждение воздуха в системе турбонаддува;

· охлаждение рабочей жидкости в автоматической коробке передач.

Классифицируються на воздушное и жидкостное охлаждения.

При жидкостном охлаждении циркулирующая в системе охлаждения двигателя жидкость воспринимает тепло от стенок цилиндров и камер сгорания и передает затем это тепло при помощи радиатора окружающей среде.

По принципу отвода тепла в окружающую среду системы охлаждения могут быть замкнутыми и незамкнутыми (проточными).

Жидкостные системы охлаждения автотракторных двигателей имеют замкнутую систему охлаждения, т. е. постоянное количество жидкости циркулирует в системе. В проточной системе охлаждения нагретая жидкость после прохождения через нее выбрасывается в окружающую среду, а новая забирается для подачи в двигатель. Применение таких систем ограничивается судовыми и стационарными двигателями.

Воздушные системы охлаждения являются незамкнутыми. Охлаждающий воздух после прохождения через систему охлаждения выводится в окружающую среду.

Рис 1 – Система охлаждения двигателя.

· Помпа 6 или водяной насос. Создает ту самую циркуляцию ОЖ в двигателе.

· Термостат7. Регулирует циркуляцию по малому или большому кругу в зависимости от температуры.

· Радиатор печки 8. Предназначен для обогрева салона. Циркуляция через печку идет постоянно, в независимости от того в каком положении находится термостат, и по какому кругу циркулирует жидкость. Горячий воздух проникает в салон, при включенном салонном вентиляторе 9.

· Основной радиатор 5. Предназначен для охлаждения ОЖ.

· Расширительный бачек 2. При увеличении температуры в системе, жидкость начинает расширяться, излишки ее уходят в расширительный бачек.

· Пробка с клапанами на расширительном бачке 1 или основном радиаторе. Поддерживает в системе охлаждения определенное давление. Давление в системе нужно для того, чтобы повысить температуру кипения. Даже при достижении температуры 110 градусов жидкость в системе не закипает.

· Датчик включения вентиляторов 4 на радиаторе. При достижении определенной температуры в радиаторе, включает вентилятор 3, установленные на нем.

Для регулирования теплового состояния современных двигателей внутреннего сгорания рекомендуется пользоваться термостатами .Для охлаждения ДВС испоьзуеться вентелятор охлождения, а для быстрого прогрева устанавливают шторки радиатора.

Охлажда́ющая жи́дкость (ОЖ) — жидкость, предназначеная для олаждения двигателя и смазки насоса системы охлаждения (помпы).

Устройство, работа и регулирование форсунок системы питания дизелей.

Дизельная форсунка представляет собой один из главных элементов системы питания дизельного двигателя. Форсунка обеспечивает прямую подачу дизельного топлива в камеру сгорания дизеля, а также дозирование подаваемого топлива с высокой частотой . форсунка осуществляет эффективный распыл горючего в пространстве над поршнем. Топливо в результате такого распыла получает форму факела. Форсунки отличных друг от друга систем топливоподачи имеют конструктивны особенности, различаются по способу управления. делят на две группы: механические; электромеханические

1 – отводящий дроссель; 2 – игла; 3 – распылитель; 4 – пружина запирания иглы; 5 – поршень управляющего клапана; 6 – втулка поршня; 7 – подводящий дроссель; 8 – шариковый управляющий клапан; 9 – шток; 10 – якорь; 11 – электромагнит; 12 – пружина клапана

Регулировка форсунки проводиться регулировочным винтом, его закручивают или выкрчивают, до момента достежения требуемого давления.

Назначение, классификация и схемы систем охлаждения, регулирование теплового режима двигателей. Низкозамерзающие охлаждающие жидкости.

Система охлаждения предназначена для охлаждения деталей двигателя, нагреваемых в результате его работы. На современных автомобилях система охлаждения, помимо основной функции, выполняет ряд других функций, в том числе:

· нагрев воздуха в системе отопления, вентиляции и кондиционирования;

· охлаждение масла в системе смазки;

· охлаждение отработавших газов в системе рециркуляции отработавших газов;

· охлаждение воздуха в системе турбонаддува;

· охлаждение рабочей жидкости в автоматической коробке передач.

Классифицируються на воздушное и жидкостное охлаждения.

При жидкостном охлаждении циркулирующая в системе охлаждения двигателя жидкость воспринимает тепло от стенок цилиндров и камер сгорания и передает затем это тепло при помощи радиатора окружающей среде.

По принципу отвода тепла в окружающую среду системы охлаждения могут быть замкнутыми и незамкнутыми (проточными).

Жидкостные системы охлаждения автотракторных двигателей имеют замкнутую систему охлаждения, т. е. постоянное количество жидкости циркулирует в системе. В проточной системе охлаждения нагретая жидкость после прохождения через нее выбрасывается в окружающую среду, а новая забирается для подачи в двигатель. Применение таких систем ограничивается судовыми и стационарными двигателями.

Воздушные системы охлаждения являются незамкнутыми. Охлаждающий воздух после прохождения через систему охлаждения выводится в окружающую среду.

Рис 1 – Система охлаждения двигателя.

· Помпа 6 или водяной насос. Создает ту самую циркуляцию ОЖ в двигателе.

· Термостат7. Регулирует циркуляцию по малому или большому кругу в зависимости от температуры.

· Радиатор печки 8. Предназначен для обогрева салона. Циркуляция через печку идет постоянно, в независимости от того в каком положении находится термостат, и по какому кругу циркулирует жидкость. Горячий воздух проникает в салон, при включенном салонном вентиляторе 9.

· Основной радиатор 5. Предназначен для охлаждения ОЖ.

· Расширительный бачек 2. При увеличении температуры в системе, жидкость начинает расширяться, излишки ее уходят в расширительный бачек.

· Пробка с клапанами на расширительном бачке 1 или основном радиаторе. Поддерживает в системе охлаждения определенное давление. Давление в системе нужно для того, чтобы повысить температуру кипения. Даже при достижении температуры 110 градусов жидкость в системе не закипает.

· Датчик включения вентиляторов 4 на радиаторе. При достижении определенной температуры в радиаторе, включает вентилятор 3, установленные на нем.

Для регулирования теплового состояния современных двигателей внутреннего сгорания рекомендуется пользоваться термостатами .Для охлаждения ДВС испоьзуеться вентелятор охлождения, а для быстрого прогрева устанавливают шторки радиатора.

Охлажда́ющая жи́дкость (ОЖ) — жидкость, предназначеная для олаждения двигателя и смазки насоса системы охлаждения (помпы).

Как работает система охлаждения двигателя

Система охлаждения двигателя автомобиля разработана для того, чтобы избежать перегрева ДВС. Во время работы двигатель непрерывно производит тепло и преобразует его в мощность. Это тепло получается при сжигании топлива в двигателе. Но в мире нет двигателя, который был бы на 100% эффективен. Всегда остается некоторое количество тепловой энергии, которая теряется в процессе работы.

Если не передать ее в атмосферу, это тепло будет перегревать двигатель, что приведет к его заклиниванию. При заклинивании из-за перегрева поршень расплавляется внутри цилиндра. Во избежание этой проблемы в автомобиле и стоит система охлаждения.

Что такое система охлаждения двигателя и как работает

По сути это система, интегрированная с двигателем. Она отводит избыточное тепло с помощью специальной жидкости.

В системе жидкостного охлаждения двигатель окружен водяными рубашками. С помощью насоса эта вода циркулирует в этой водяной рубашке.

Вода, текущая в этих рубашках, отводит тепло от двигателя. Эта горячая вода затем течет через радиатор, где охлаждается от холодного тепла, выдуваемого через вентилятор.

В этой системе вода отбирает тепло у двигателя, и охлаждается воздухом, а затем снова циркулирует в двигателе.

Это косвенный процесс охлаждения, когда фактическое охлаждение, то есть воздух, не охлаждает систему напрямую. При этом воздух охлаждает воду, а вода охлаждает двигатель.

Система жидкостного или непрямого охлаждения используется в больших двигателях, в таких как легковые и грузовые автомобили.

Преимущества жидкостной системы охлаждения

  1. Компактный дизайн.
  2. Обеспечивает равномерное охлаждение двигателя.
  3. Двигатель может быть установлен в любом месте автомобиля.
  4. Может использоваться как на малых, так и на больших двигателях.

Недостатки системы жидкостного охлаждения

  1. В ней водяная рубашка становится еще одной частью двигателя. При этом в случае выхода из строя системы охлаждения двигатель может получить серьезные повреждения.
  2. Она требует регулярного технического обслуживания и, таким образом, создает дополнительные расходы на обслуживания.

Система воздушного или прямого охлаждения

В системе прямого охлаждения двигатель охлаждается непосредственно с помощью воздуха, проходящего через него. Это такая же система охлаждения, которая используется для мотоциклетных двигателей.

В ней воздух находится в непосредственном контакте с двигателем, следовательно, она также известна как система прямого охлаждения.

Система воздушного охлаждения используется для небольших двигателей, таких как велосипеды, газонокосилки и т. д.

Преимущества системы воздушного охлаждения

  1. Конструкция двигателя становится проще.
  2. Ремонт легко в случае повреждений.
  3. Отсутствие громоздкой системы охлаждения облегчает обслуживание системы.
  4. Нет опасности утечки охлаждающей жидкости.
  5. Двигатель не подвержен заморозкам.
  6. Это автономное устройство, так как оно не требует радиатора, жатки, резервуаров и т.д.
  7. Установка системы воздушного охлаждения проста.
Читайте также  Принцип работы трехцилиндрового двигателя

Недостатки двигателей воздушного охлаждения

  1. Их можно использовать только в местах, где температура окружающей среды ниже.
  2. Охлаждение не равномерное.
  3. Более высокая рабочая температура по сравнению с двигателями с водяным охлаждением.
  4. Производят больше аэродинамического шума.
  5. Удельный расход топлива выше.
  6. Более низкие максимально допустимые коэффициенты сжатия.
  7. Вентилятор, если он используется, потребляет почти 5% мощности, вырабатываемой двигателями.

Эффективная система охлаждения двигателя: какая она

Она должна быть способна отводить около 30% тепла, выделяемого двигателем, при этом поддерживая оптимальную рабочую температуру.

Она должна отводить тепло с большей скоростью, когда двигатель горячий, и снимать двигатель с меньшей скоростью, когда двигатель холодный.

Примечание: двигатели в автомобилях повышенной проходимости и внедорожниках необходимо охлаждать по крайней мере по двум причинам. Одна основана на температуре горящих газов в цилиндрах, превышающей температуру плавления материала блока и цилиндров.

Если не убрать тепло, двигатель может выйти из строя. Вторая причина – поддержание оптимальной температуры двигателя помогает поддерживать его эффективную работу (подумайте об экономии топлива) и оптимизирует объемную эффективность (подумайте о лошадиных силах).

Радиатор охлаждения двигателя

В то время как существуют разные типы радиаторов, распространенный тип называется радиатором с зазубренной трубкой. Он состоит из трубок (для переноса жидкости), к которым прикреплены кольца или ребра для рассеивания тепла.

Горячая вода подается по трубам в верхний резервуар (верх радиатора) с помощью водяного насоса. Охлажденная вода направляется из нижнего резервуара (нижняя часть радиатора) обратно в двигатель для циркуляции через блок двигателя через небольшие каналы.

Жидкость, проходящая через блок двигателя, помогает отводить тепло, в дополнение к дополнительному воздуху, пропускаемому через него вентилятором и при движении.

Помпа

Водяной насос обычно устанавливается в передней части двигателя и приводится в движение ремнем. Нижняя часть радиатора (нижняя емкость) соединена со стороной всасывания насоса.

Шпиндель насоса приводится в движение ремнем, который соединяется со шкивом, установленным на конце коленчатого вала. Назначение насоса — просто извлекать горячую и впрыскивать более холодную жидкость (часто смесь воды и охлаждающей жидкости на основе спирта).

Приводы вентилятора

Вентилятор радиатора прикрепляется с помощью шкива и ремня. Скорость его вращения определяется частотой вращения двигателя и механической конструкцией механизма шкива / ремня.

Вентиляторы для системы охлаждения

Вентиляторы различаются по многим параметрам, включая материал, из которого они состоят, и способ их изготовления или сборки, по диаметру, количеству лопастей, длине лопасти, шагу лопасти и типу ступицы. Материалы включают нейлон или пластик, металл и гибридные материалы, например, вентилятор Horton HTEC (термореактивный композит).

Формованные вентиляторы являются наиболее распространенными и интенсивно используются как на дорогах, так и вне дорог. Они изготавливаются из пластика или нейлона и имеют цельный дизайн.

Модульные вентиляторы обычно используются в условиях бездорожья и обеспечивают значительную гибкость конструкции. При этом в одной и той же втулке могут использоваться различные длины лезвий, их шаг, конфигурации и материалы для оптимизации производительности. Различные варианты ступиц увеличивают их пригодность для многих применений.

Металлические вентиляторы используются в внедорожных транспортных средствах, а также в транспортных средствах, предназначенных для дорог. Прочные и относительно легкие, они могут быть изготовлены по индивидуальному заказу с учетом точных требований к воздушному потоку, размеру, длине лопасти, ширине лопасти, типу кожуха, зазору наконечника, диапазону скоростей передаточного числа вентилятора и другим факторам.

Устройство и принцип работы системы охлаждения двигателя

Нормальное функционирование силовой установки автомобиля возможно только при определенном температурном режиме. Для большинства авто оптимальный диапазон температуры составляет 80-90 град. С. При более низком показателе ухудшается смесеобразование в цилиндрах, а высокая температура приводит к расширению металла, что может стать причиной заклинивания узлов.

Общее устройство системы охлаждения

Чтобы температура силовой установки была в оптимальном диапазоне, в конструкцию мотора включена система охлаждения. Именно благодаря ей обеспечивается отвод тепла от самых разогреваемых элементов — цилиндров.

Виды систем охлаждения

Всего на двигателях внутреннего сгорания используется два типа охлаждения – воздушное и жидкостное.

Воздушная система охлаждения, ее конструкция, недостатки

Устройство воздушной системы охлаждения двигателя

В силу ряда недостатков на автомобильном транспорте воздушная система широкого распространения не получила, хотя конструктивно она значительно проще, чем жидкостная. Основным ее элементом являются ребра охлаждения на цилиндрах.

Тепло, выделяемое от цилиндров, распространялось на эти ребра, а проходящий через них поток воздуха осуществлял его отвод. Для создания потока дополнительно конструкция системы могла включать турбину – специальную крыльчатку, с приводом от коленчатого вала и рукав, которым создаваемый поток воздуха направлялся на цилиндры. Это вся конструкция воздушной системы.

На автотранспорте воздушная система практически не используется потому, что:

  • невозможна регулировка температурного режима (зимой мотор не выходил на необходимую температуру, а летом – очень быстро перегревался);
  • чтобы обеспечить равномерное распределение потока воздуха, каждый цилиндр стоял отдельно;
  • во время стоянки с заведенным мотором даже при наличии турбины поток воздуха очень слабый, что приводит к быстрому перегреву;
  • невозможно организовать обогрев салона.

Из-за этих недостатков воздушная система на автомобилях не применяется, хотя единичные случаи все же были – ЗАЗ-968 «Запорожец» как раз и имел такую систему охлаждения. Зато она широко используется на мототранспорте и технике, оснащенной 2-тактными моторами (бензопилы, мотокосы, мотоблоки и т. д.).

Видео: Система охлаждения двигателя. Устройство и принцип работы

Устройство, конструкция, принцип работы

Жидкостная система охлаждения

Достоинством жидкостной системы охлаждения как раз и является возможность поддержания температуры в заданном диапазоне, поэтому она лучше воздушной. Но конструкция этой системы значительно сложнее.

В ее состав входит:

  1. Рубашка охлаждения
  2. Водяной насос
  3. Термостат
  4. Радиаторы
  5. Соединяющие патрубки
  6. Вентилятор

При этом основным рабочим элементом такой системы является специальная жидкость – антифриз, при помощи которой и осуществляется отвод тепла. Раньше вместо него использовалась обычная вода, но из-за низкого температурного порога замерзания и образования накипи от воды постепенно отказались.

1. Рубашка охлаждения

Рубашка охлаждения – специальная система каналов в блоке цилиндров и головке блока, по которой движется жидкость. Если рассматривать все по-простому, то выглядит это так: имеется блок, в который устанавливаются цилиндры, а также основные узлы и механизмы. Поверх этого блока сделана оболочка, а пространство между ними и используется как каналы для движения жидкости. Такая конструкция позволяет жидкости омывать цилиндры, проходить рядом с узлами, установленными в блоке и головке, что обеспечивает отвод тепла от них.

2. Помпа

Так выглядит водяная помпа

В рубашку охлаждения установлена водяная помпа. Она состоит из приводного зубчатого колеса (шкива) и крыльчатки, которая помещается внутрь рубашки, посаженных на одну ось. Привод ее осуществляется от коленчатого вала при помощи ремня.

Именно водяной насос и обеспечивает циркуляцию жидкости по системе. Получая вращение от коленчатого вала, крыльчатка заставляет двигаться жидкость по каналам рубашки.

3. Радиатор

При этом антифриз циркулирует не только по рубашке. Если бы так и было, то жидкости некуда было бы отдавать тепло, то есть двигатель быстро бы перегревался. Чтобы этого не происходило, в конструкцию включен радиатор.

Представляет он собой конструкцию из двух бачков – в один подается жидкость из рубашки, а из второго она возвращается обратно. Эти бачки между собой соединены большим количеством трубок, по которым жидкость перемещается между ними. Чтобы обеспечить лучший теплообмен, радиатор изготавливают из металлов, обладающих высокой теплопроводностью (медь, алюминий, латунь). Также чтобы повысить теплообмен между трубками располагаются специальные ленты, уложенные определенным образом и имеющие большое количество мест контакта с трубками.

Жидкость, проходя через трубки, часть тепла отдает лентам. Проходящий сквозь радиатор воздух отбирает тепло и отводит его в окружающую среду. Для обеспечения хорошего потока воздуха радиатор устанавливают в передней части авто. Радиатор с рубашкой охлаждения соединяется при помощи резиновых патрубков.

Отдельно отметим, что благодаря жидкостной системе удалось обеспечить и отопление салона. Для этого в систему охлаждения включили еще один радиатор, который поместили в салоне. Конструктивно он такой же, как и основной радиатор, но по габаритам меньше. Поток воздуха же для него создается при помощи электромотора с вентилятором.

Видео: Перегрев двигателя. Последствия перегрева.

4. Термостат

Система охлаждения должна обеспечивать максимально быстрый выход силовой установки на оптимальный температурный режим. И чтобы это обеспечить, в конструкцию включен термостат. Чтобы понять, для чего он нужен – немного теории.

Если бы конструкция системы состояла только из рубашки и насоса, то двигатель очень быстро бы перегревался, поскольку жидкость двигалась только по каналам в блоке и отвести тепло ей было бы некуда.

Устройство и принцип работы термостата

Чтобы избежать этого в конструкцию включили радиатор. Но из-за его наличия объем антифриза или тосола увеличивался, к тому же назначение радиатора – отвод тепла, поэтому двигатель очень долго будет выходить на нужную температуру, особенно в зимний период.

Для обеспечения быстрого выхода на необходимую температуру, систему охлаждения разделили на два кольца – малое (задействованы только рубашка охлаждения и насос) и большое (рубашка + насос + радиатор).

Разделением на кольца и занимается термостат. Представляет он собой клапан, который срабатывает от повышения температуры. На разных авто температура его срабатывания отличается, но в целом он работает в диапазоне – 85-95 град. С.

Корпус термостата располагается обычно на блоке цилиндров возле канала, ведущего на радиатор. Пока температура мотора низкая, термостат перекрывает этот канал и жидкость перемещается только по рубашке. По мере повышения температуры этот клапан начинает постепенно открываться, пуская жидкость уже по большому кольцу, с задействованием радиатора. При достижении определенного температурного значения он открывается полностью, и жидкость уже движется только по большому кольцу.

5. Вентилятор, датчики

Принцип работы вентилятора системы охлаждения

Бывает так, что потока воздуха недостаточно, чтобы обеспечить нормальный отвод тепла от радиатора. К примеру, такое случается в пробке, когда двигатель постоянно работает, а вот встречного потока воздуха нет, поскольку авто обездвижено.

Чтобы не дать жидкости перегреться, используется вентилятор, создающий принудительно поток воздуха. Размещается он за основным радиатором и приводится в движение электромотором. Включение же его в работу осуществляется за счет установленного в радиаторе температурного датчика.

Дополнительно в конструкцию входит также температурный датчик, который передает данные о температуре на приборную панель в салоне, поэтому водитель может постоянно контролировать температурный режим мотора и своевременно заметить появление неисправности, из-за чего температура мотора «пошла вверх».

Основные неисправности системы охлаждения

Неисправностей у системы охлаждения двигателя не так уж и много, но последствия от них могут быть очень серьезными. Основными из них являются:

  • Утечка охлаждающей жидкости;
  • Неисправность насоса, термостата;
  • Повреждение проводки датчиков.
Читайте также  Перевод двигателя с 80 на 92 бензин

Видео: Все причины перегрева и кипения двигателя. Устранение причин перегрева двигателя ВАЗ НИВА

Утечка жидкости может произойти из-за пробоя рубашки охлаждения, прокладки ГБЦ, резиновых патрубков, радиатора или же из-за ненадежного крепления мест соединения.

Выявить эту неисправность несложно, поскольку в результате утечки под авто будет образовываться лужа из охлаждающей жидкости. Если своевременно не устранить течь, то большая часть охлаждающей жидкости может вытечь, и система уже не сможет поддерживать температурный режим.

Поломка насоса зачастую связана с выходом из строя его подшипника. Сопровождается это следами подтеков со стороны привода, повышенным шумом при работе мотора, неравномерным износом приводного ремня.

Если своевременно не заменить насос, то существует вероятность, что он заклинит и порвет приводной ремень, а это уже чревато достаточно серьезными проблемами, поскольку зачастую этим ремнем приводится в работу и ГРМ.

Проблема с термостатом обычно связана с тем, что он заклинивает в каком-то одном положении. Из-за этого перевод жидкости между кольцами не осуществляется, она движется либо только по малому, либо по большому кругу.

Повреждение же проводки или датчиков приводит к тому, что показания на приборную панель не передаются или не соответствуют действительности, а вентилятор не включается в требуемый момент или же работает постоянно, из-за чего нарушается температурный режим.

Типы систем охлаждения

На данной схеме отображена наиболее распространенная схема водяного охлаждения типового ДВС. С такими системами работает подавляющее большинство современных автомобилей.

В современных двигателях насчитывают два механизма и три (либо четыре) системы:

  • механизм распределения потоков топливовоздушной смеси и отработавших газов — называется ГРМ;
  • кривошипно-шатунный (КШМ) — это механизм «координации» движения поршней в цилиндрах с работой систем питания и, если это предусмотрено конструкцией — системы зажигания;
  • система питания;
  • система смазки;
  • система зажигания — только для бензиновых (инжектор и/или карбюратор) и газовых ДВС, в дизельных эта система не нужна;
  • система теплоотвода, то есть — охлаждения.

В современном автомобилестроении нашли применение две системы — жидкостная и воздушная. Еще называют третью — комбинированную, но это, как говорится, «по науке» — в теоретической механике и теории автомобиля.

В момент возгорания рабочей смеси температура в цилиндрах может достигать выше 2000° (двух тысяч градусов) Цельсия, а система охлаждения призвана поддерживать расчетный температурный баланс, который колеблется от 90 до 120 градусов. С точки зрения теоретической механики, применяемые в современных ДВС жидкостные системы, на самом деле, являются гибридными или комбинированными. Однако на практике, да и сами сервисмены, называют ее жидкостной, а чаще — водяной, хотя вместо воды уже давно используют антифризы.

Жидкостные системы охлаждения — специфика

Почему вода? Почему водяная система охлаждения двигателя? Ответ очевиден, в автомобильных моторах как раз она и была. Еще и сегодня ездят по нашим дорогам автомобили старых конструкций, в которых даже не был предусмотрен расширительный бачок. За ненадобностью. А рабочая температура колебалась в районе 70-90 градусов. В современных же ДВС применяется так называемая герметичная система, и повышенное давление (до 1,4 атмосферы) позволяет современным антифризам не кипеть при температурах до 120 градусов и — конечно же — не замерзать до минус 70-80 градусов по Цельсию.

Подавляющее большинство жидкостных систем охлаждения работают от центробежного водяного насоса (помпы), а также под действием естественных законов физики — конвекции, нагревания и охлаждения.

Основные составляющие жидкостной системы охлаждения

Системы эти бывают одноконтурными, двух- и многоконтурными. Устройство системы охлаждения двигателя — не сложно, в ее «стандартный перечень» входят:

  • рубашка охлаждения самого блока цилиндров;
  • рубашка охлаждения головки (или головок) блока цилиндров, обе имеют так называемые рёбра охлаждения, они – наружные, именно поэтому теория автомобиля и называет данную систему комбинированной;
  • один или несколько радиаторов охлаждения;
  • один или несколько вентиляторов принудительного охлаждения радиаторов (или радиатора, если он один);
  • жидкостный насос, который механики между собой называют водяным насосом или помпой; конструктивно является насосом центробежного типа, приводы — шестеренчатый, ременной или электрический;
  • термостат (в двухконтурных системах старого типа моторов без применения электроники);
  • расширительный бачок с крышкой не герметичной, а тарированной под определенное давление;
  • соединительные патрубки системы охлаждения двигателя;
  • теплообменник отопителя салона (или теплообменники отопителей частей салона в многозонных системах климат-контроля);
  • датчик (или датчики) температуры ОЖ;
  • электронный блок управления охлаждением, а также вентиляцией и отоплением салона.

В руке у механика тот самый пресловутый термостат, разделяющий систему на два контура. При разогреве двигателя охлаждающая жидкость циркулирует по замкнутому, так называемому «малому кругу», не попадая в радиатор. Прогрев рубашек охлаждения блока и головки блока цилиндров до рабочих температур происходит быстрее.

Система охлаждения дизельного двигателя принципиально не отличается от системы бензинового. Различия — в конструкциях, объемах, мощностях и некоторых других параметрах, но не в типе применяемого топлива.

Охлаждение масла

Система смазки в современных автомобильных моторах, помимо своей главной задачи — смазки трущихся деталей, — выполняет еще одну – теплоотводную: моторное масло отбирает часть тепла от работающих сопряженных частей мотора. Во многих современных двигателях даже предусмотрен собственный маслоохладитель, который в иных технологических картах и наставлениях так и называется — масляный радиатор.

Применяется ли сегодня воздушное охлаждение?

Да, применяется, и вполне успешно. В современном моторостроении различают два их типа: естественное (обдувом набегающего воздуха) и принудительное (при помощи вентиляторов).

Естественное охлаждение чаще применяется в моторной авиации. Принудительное — например, в таких конструкциях, как водные и колесные скутеры (мотороллеры), в мотоблоках и других сельхоз- и коммунальных агрегатах и механизмах.

В автомобилестроении можно вспомнить некоторые модели Volkswagen Group — Porsche, Beetle, он же – Kafer, а также итальянский Fiat-500, французский Citroën 2CV, чешскую легковушку Tatra-613 или родной и до боли знакомый всенародный автомобиль СССР — Запорожец.

История моторостроения может вспомнить и тракторные двигатели с воздушным охлаждением, а также грузовые автомобили с многоцилиндровыми дизельными моторами. Та же, например, чешская 12-тонная Tatra выпускалась вплоть до 2010 годов и до сих пор «в строю». К слову, кабина водителя этого самосвала нагревается специальным электрическим отопителем, а салон Запорожца — автономным… бензиновым.

На фото — «тот самый» 8-цилиндровый V-образный дизельный силовой агрегат Tatra с непосредственным воздушным охлаждением. Рабочий объем 12,7 литра с турбонаддувом и интеркулером, мощностью — от 312 до 442 л.с., с крутящим моментом — от 1400 до 2100 Нм, в рамках соответствия требованиям стандартов от Евро 2 до Евро 5.

Испарительные системы охлаждения

В современном автомобилестроении широкого применения не нашла. Механика ее работы сводится к тому, что вода доводится до температуры значительно выше точки кипения, и температура падает в результате ее испарения. Применялась в экспериментальных моделях авиастроения в самом начале XX века, а сегодня подобную конструкцию можно встретить на дизелях мощностью до 20 л.с. — на минитракторах, в мобильных мотоблоках и тп.

Неисправности системы охлаждения двигателя

Наиболее слабым звеном большинства систем являются радиаторы. Как правило, они устанавливаются в передних частях авто, даже если двигатель установлен в базе или за задней осью. Делается это для того, чтобы охлаждающая жидкость отдавала тепло набегающему потоку воздуха.

Соты радиаторов забиваются мелкой пылью, насекомыми и другими дорожными загрязнениями, в результате теплопроводность радиатора падает, и температурный режим двигателя нарушается. Кроме того, радиаторы подвержены механическим повреждениям на высоких скоростях, именно поэтому, например, отличительным признаком мощной и высокоскоростной машины является мелкоячеистая сетка в широких и огромных воздухозаборниках.

Кавитационное разрушение жидкостного насоса классической конструкции.

Наиболее затратной неисправностью автомеханики называют поломку водяного (жидкостного) насоса. Стоит водителю прозевать стрелочный указатель в красной зоне температурного указателя или загоревшийся красным светом индикатор на панели приборов, и последствия могут оказаться весьма печальными. Вплоть до капитального ремонта двигателя.

В моторах старых конструкций особенной головной болью автовладельцев была потеря работоспособности термостата.

Также периодически выходят из строя:

  • датчики и указатели;
  • может прохудиться патрубок или ослабнуть хомут на соединениях патрубков;
  • не включаются вовремя вентиляторы охлаждения;
  • иногда выходит из строя клапан давления в пробке расширительного бачка.

Эти и многие другие неисправности приводят к утере антифриза, перегреву блока и его головки (головок) и, в конце концов, к выходу мотора из строя. Любое подозрение на неисправность в системе охлаждения должно быть водителем немедленно установлено и устранено.

Симптомы перегрева или недостаточного нагрева двигателя

При критическом перегреве происходит:

  • периодический уход стрелки указателя температуры на приборной панели к красному сектору (либо появление красного индикатора в тех автомобилях, где указатель не предусмотрен);
  • потеря мощности двигателя казалось бы «в безобидных ситуациях»;
  • неадекватно высокий жар в районе моторного отсека.

При недостаточном нагреве:

  • стрелка «не отрывается» от нижнего сектора указателя температуры на приборной панели;
  • не тухнет желтый (или, в некоторых конструкциях, – белый) индикатор указателя температуры;
  • в результате двигатель «тупит», не развивает должной мощности – и особенно тогда, «когда это нужно» — на подъеме, при обгоне, при экстренном маневрировании и/или разгоне.

Эти, а также многие иные, весьма специфические и малопонятные водителю, «неадекватности» в поведении двигателя, его агрегатов и автомобиля в целом.

Диагностика негерметичности охлаждающей системы

Одной из главных причин неисправности системы является падение уровня антифриза в расширительном бачке. Помимо банальных потёков в негерметичных соединениях, может выйти из строя и пробка на бачке с тарированным клапаном контроля давления. Охлаждающая жидкость, а точнее вода из раствора этиленгликоля (пропиленгликоля) банально испаряется, и уровень ОЖ – падает, мотор перегревается.

За уровнем охлаждающей жидкости в расширительном бачке следить не трудно. Об этом постоянно напоминают и упоминают: и преподаватели в автошколах, и различные наставления для водителей… а моторы как кипели, так и продолжают кипеть. На радость механикам и мотористам…

Контроль уровня охлаждающей жидкости

Контролировать этот уровень следует постоянно. К слову, в процессе эксплуатации (в течение рабочего дня) он в бачке может (и должен) меняться. Это — нормально. Ненормально — когда этот уровень опускается ниже нижней отметки, что означает потерю жидкости, либо – выше, что может означать, например, прорыв картерных газов в систему охлаждения. И это — уже крайне тревожный звонок.

В условиях профильной СТО контроль уровня и давления в системе осуществляется при помощи специального оборудования и инструмента. Рядовой автовладелец имеет в своем арсенале только один прием — систематический визуальный контроль уровня в верхнем бачке радиатора (на автомобилях старых конструкций, без расширительного бачка) либо — в расширительном бачке по специальным рискам – max и min.