Вспомогательные механизмы приборы и оборудование ДВС

Вспомогательное оборудование для диагностики двигателя и его систем

20. Вспомогательное оборудование для диагностики двигателя и его систем

К вспомогательным приборам, используемым в диагностике, относятся компрессометры, вакуумметры, вакуумный насос, тестер противодавления катализатора и т. п. Эти приборы полезные, но необязательные, хотя бывают случаи, когда отсутствие одного редко используемого прибора затягивает и усложняет процесс определения неисправности.

Компрессометры и компрессографы. Компрессия — давление газов в цилиндре в конце такта сжатия, которое зависит от износа цилиндропоршневой группы, вязкости масла, частоты вращения коленчатого вала, герметичности клапанов. Замер компрессии — один из самых распространенных и информативных методов оценки состояния механизмов двигателя. Фиксируя не только максимальное значение давления сжатия, но и давление, достигавшееся после первого такта сжатия, можно получить информацию для оценки степени износа поршневых колец. Нормой принято считать первоначальный скачок давления, составляющий около 70 % максимального.

Компрессометр, представляющий собой манометр с обратным клапаном, позволяет измерить конечную величину давления, а также более наглядно оценить динамику его нарастания, что является важной информацией для опытного механика. Предпочтение следует отдавать моделям с гибким соединительным шлангом, что позволяет легко присоединить прибор в двигателях с затрудненным доступом к свечным отверстиям. Для удобства работы обязательно наличие быстросъемных разъемов — для замены адаптеров. Достаточно 3. 4 адаптеров для различных типов резьбы свечей.

Наиболее удобными являются специальные комплекты, в состав которых входит компрессометр с различными насадками и адаптерами. При прогретом двигателе наконечник компрессо-метра вставляют в отверстие для свечей зажигания (карбюраторные двигатели) или форсунки (дизельные двигатели). Коленчатый вал карбюраторных двигателей при проверке компрессии провертывают при помощи стартера с частотой 180. 200 мин-1. В дизельном двигателе компрессия замеряется во время его работы при частоте вращения коленчатого вала 500 мин»1. Проверяют компрессию несколько раз. Разность показаний не должна превышать 0,1 МПа. В зависимости от степени сжатия мини мально допустимая компрессия для карбюраторных двигателей составляет 0,45. 0,8 МПа, для дизельных — около 2 МПа. Недостатки этого метода диагностики: разряд аккумуляторной батареи при проворачивании коленчатого вала двигателя, невозможность сравнения показаний компрессометра при замере давления в разных двигателях вследствие невозможности получения одинаковой частоты вращения, невозможность определить причину низкой компрессии.

В условиях СТОА наиболее удобно использовать компрессо-графы, позволяющие измерять компрессию одновременно во всех цилиндрах и снабженные графопостроителем.

Вакуумметры. Универсальные измерители разряжения (вакуумметры) измеряют величину разряжения, образующегося за дроссельной заслонкой работающего двигателя. Информация о величине разряжения и динамике его изменения позволяет оценить состояние шатунно-поршневой группы (ШПГ), плотность прилегания клапанов к седлам, правильность работы механизма газораспределения и даже отклонение от заданного состава топливной смеси. Обычно вакуумметры выпускаются в виде универсального прибора, выполняющего также и функции вакуумного насоса.

21. Приборы для виброакустической диагностики

Наиболее перспективным методом диагностики технического состояния газораспределительного и кривошипно-шатунного механизмов являются виброакустические методы с применением специальной измерительной аппаратуры. Для виброакустической диагностики (ВАД) используются колебательные процессы упругой среды, возникающие при работе ШПГ. Источником этих колебаний являются газодинамические процессы (сгорание, выпуск, впуск), регулярные механические соударения в сопряжениях за счет зазоров и неуравновешенности масс, а также хаотические колебания, обусловленные процессами трения. При работе двигателя все эти колебания накладываются друг на друга и образуют случайную совокупность колебательных процессов, называемую спектром. Это усложняет виброакустическую диагностику из-за необходимости подавления помех, выделения полезных сигналов и расшифровки колебательного спектра.

Распространение колебаний в упругой среде носит волновой характер. Параметрами колебательного процесса являются частота (периодичность), уровень (амплитуда) и фаза (положение импульса колебательного процесса относительно опорной точки цикла работы механизма). Уровень измеряют смещением, скоростью или ускорением частиц упругой среды, давлением, возникающим в ней, или же возможностью колебательного процесса. Воздушные колебания называются шумами (стуками) и улавливаются с помощью микрофона. Вибрации отдельных деталей механизма измеряют с помощью пьезоэлектрических датчиков.

ВАД позволяет расшифровать колебательные процессы, так как каждая соударяющаяся пара вызывает собственные колебания, которые по своим параметрам резко отличаются как от колебаний газодинамического происхождения, так и от колебаний, вызванных трением. Величина колебаний резко изменяется при изменении зазоров, так как изменение зазоров вызывает изменение энергии соударения. Также меняется длительность соударений. Принадлежность колебаний соударяющихся пар определяют по фазе относительно опорной точки (верхняя мертвая точка, посадка клапана и т. п.).

Существует несколько методов ВАД. Наибольшее распространение получила регистрация уровня колебаний в виде мгновенного импульса в функции времени (или угла поворота коленчатого вала) при помощи осциллографа. Уровень характер спада колебательного процесса по сравнению с нормативным позволяет определить неисправность диагностируемого сопряжения. Более универсальным методом ВАД является регистрация и анализ всего спектра, т. е. всей совокупности колебательных процессов. Колебательный спектр снимают на узком характерном участке процесса при соответствующем скоростном и нагрузочном режиме работы диагностируемого механизма. Анализ спектра заключается в группировке по частотам его составляющих колебательных процессов при помощи фильтров (подобно настройке радиоприемников на соответствующую волну). Дефект выявляют по максимальному или среднему уровню колебательного процесса в полосе частот, обусловленной работой диагностируемого сопряжения по сравнению с нормативами (эталонами).

Приближенно определить шумы и стуки в двигателе можно при помощи стетоскопа.

Двигатель допускается к эксплуатации при умеренном стуке клапанов, толкателей и распределительного вала на малых оборотах холостого хода. Если обнаружены стуки в шатунных и ко ренных подшипниках коленчатого вала, двигатель к эксплуатации не допускается. Стук коренных подшипников глухой, сильный, низкого тона. Стук шатунных подшипников — среднего тона, более звонкий, чем стук коренных подшипников. При выключении зажигания стук в цилиндре проверяемого подшипника исчезает. Стук коренных подшипников прослушивается в плоскости разъема картера, а шатунных — на стенках блока цилиндров по линии движения поршня в местах, соответствующих верхней и нижней мертвым точкам.

Стуки поршневых пальцев резко металлические, пропадающие при выключении зажигания. Они прослушиваются в верхней части блока цилиндров при резком переменном режиме работы прогретого двигателя. Наличие стука указывает на повышенный зазор между пальцем и втулкой головки шатуна или на увеличенное отверстие для пальца в бобышке поршня.

Стук поршней глухой, щелкающий, уменьшающийся по мере прогрева двигателя. Стуки поршней прослушиваются в верхней части блока цилиндров со стороны, противоположной распределительному валу, при работе недостаточно разогретого двигателя (при сильном износе возможен стук поршня и на прогретом двигателе). Наличие стуков свидетельствует о значительном износе поршней и цилиндров.

Стуки клапанов звонкие, хорошо прослушиваются на прогретом двигателе при малых оборотах двигателя. Они возникают при увеличении тепловых зазоров между стержнями клапанов и носком коромысла (толкателем). Точность диагноза в значительной степени зависит от опыта механика.

Эндоскоп — единственное средство, которое позволяет без разборки двигателя с абсолютной достоверностью сделать заключение о степени износа стенок цилиндров, величине нагара, степени повреждения днищ поршней или поверхности клапанов. С помощью эндоскопа можно обнаружить наличие локальной выработки в виде вертикальной полосы на стенках цилиндров. Подобный дефект установить другими методами невозможно, необходима полная разборка двигателя.

Гибкие эндоскопы применяют в случаях, когда объект имеет сложную геометрию (двигатели внутреннего сгорания). В эндо скопах визуальная и осветительная системы состоят из волоконной оптики, смонтированной внутри гибкой трубки (рис. 5.2, а). Канал для передачи изображения состоит из большого количества волокон 2 толщиной 10 мкм и линзового объектива, который строит изображение исследуемого объекта. Изображение, полученное на противоположном конце кабеля, рассматривается через окуляр или преобразуется в цифровой код. Осветительная система представляет собой светорассеивающую линзу, вклеенную в головку прибора и световолоконный жгут 3 с нерегулярно уложенными волокнами. Конец световолоконного жгута вмонтирован в специальный наконечник, подключенный к осветителю.

Гибкие эндоскопы обычно снабжены управляемым дисталь-иым концом, изгибающимся в одном (диаметром до 6 мм) или в двух (диаметром более 6 мм) плоскостях. Угол изгиба — 90. 180°.

Судовые двигатели внутреннего сгорания (СДВС)

Дизельный двигатель — поршневой двигатель внутреннего сгорания, работающий по принципу самовоспламенения распылённого топлива

Читайте также  Оборудование для производства топливных гранул

ИА Neftegaz.RU. Первые судовые двигатели внутреннего сгорания (ДВС) появились в начале 20-го века. Датское судно Зеландия, построенное в 1912 г, имело дизельную установку с 2-мя дизелями мощностью по 147,2 кВт.

В настоящее время основную часть устанавливаемых на судах главных энергетических установок составляют ДВС.

Паротурбинные установки имеют только суда с мощностью двигателей от 14700 до 22 100 кВт.

Дизельная энергетическая установка состоит из 1-го или нескольких основных двигателей, а также из обслуживающих их механизмов.

В зависимости от способа осуществления рабочего цикла ДВС разделяют на 4-тактные и 2-тактные.

Дополнительное увеличение мощности достигается с помощью наддува.

По частоте вращения ДВС разделяются на:

  • малооборотные дизели с частотой вращения 100-150 об/мин, которые непосредственно приводят в движение судовой движитель;
  • среднеоборотные — 300-600 об/мин, которые приводят в движение судовой движитель через редуктор.

До конца 1960 х гг. на судах устанавливали реверсивные главные двигатели, позволяющие судну осуществлять задний ход. Только при малых мощностях для реверса ДВС использовали специальные устройства (реверсредукторы), дающие возможность маневрирования.

В 60-х гг одновременно с появлением винтов регулируемого шага начали в качестве главного двигателя применять нереверсивные ДВС вначале на малых судах, траулерах и буксирах, а затем и на больших торговых судах. За счет этого конструкция двигателей упростилась.

Машинное отделение (дизель со вспомогательными механизмами).

Судовая энергетическая установка с ДВС изображена на рисунке.

Кроме главного двигателя предусмотрены еще 2 вспомогательных, которые приводят во вращение генераторы.

Для обслуживания главного и вспомогательных двигателей используются вспомогательные механизмы и системы, а также система трубопроводов и клапанов.

Топливная система предназначена для подачи топлива из цистерн к двигателю.

При этом для уменьшения вязкости топливо подогревается и освобождается в сепараторах и фильтрах от жидких и твердых примесей.

Система смазки служит для прокачивания смазочного масла через двигатель с целью уменьшения трения между трущимися поверхностями, а также для отвода части полученного от двигателя тепла и очистки масла.

Система охлаждения предусмотрена для отвода от двигателя тепла, которое проникает в основном через стенки цилиндра и возникает во время сжигания топлива, а также для охлаждения циркулирующего смазочного масла.

Эта система состоит из насосов для пресной и морской воды и охладителей воды и масла.

Пусковая установка, включающая в себя компрессоры, резервуары сжатого воздуха, а также трубопроводы и клапаны, служит для пуска главного и вспомогательных двигателей.

Наряду с указанными выше вспомогательными системами главного и вспомогательных двигателей в машинном отделении находятся и другие судовые механизмы общего назначения.

Принцип действия 4-тактного ДВС показан на рисунке ниже.

В 4-тактном двигателе рабочий цикл осуществляется за 2 поворота коленчатого вала, т. е. за 4 хода поршня.

Механическая работа совершается только за время 1-го такта, 3 остальных служат для подготовки.

При 1-м такте поршень движется в направлении коленчатого вала.

Под воздействием возникающего при этом разрежения воздух через открытый всасывающий клапан устремляется в цилиндр.

В дизеле без наддува давление всасываемого воздуха равно атмосферному, в дизеле с наддувом к цилиндру подводится уже предварительно сжатый воздух. Во время 2-го такта при закрытых всасывающих клапанах предварительно поступивший воздух перед поршнем подвергается сжатию, за счет чего повышаются температура и давление.

Топливоподкачивающий насос, привод которого согласован с движением соответствующего поршня, повышает давление топлива.

При достижении давления 19,62-39,24 МПа топливо через форсунку впрыскивается в цилиндр, в котором у дизелей без наддува давление сжатого воздуха составляет 2,94-3,43 МПа и температура 550-600°С, а у дизелей с наддувом соответственно 3,92-4,91 МПа и 600-700°С.

Принцип действия 4-тактного дизеля.

Топливо впрыскивается незадолго до того момента, когда поршень достигнет верхнего положения.

Впрыснутое и тщательно распыленное топливо в сжатом воздухе нагревается, испаряется и вместе с воздухом образует горячую самовоспламеняющуюся смесь. 3-й такт является рабочим.

Во время процесса сгорания топлива образуются горячие газы, которые вызывают увеличение давления над поршнем в дизелях без наддува от 4,41 до 5,4 МПа, а в дизелях с наддувом — от 5,89 до 7,85 МПа.

Под давлением силы, возникающей за счет давления газов, поршень движется вниз, газы расширяются и производят при этом механическую работу.

Во время 4-го такта открывается выпускной клапан и отработавшие газы выходят наружу.

4-тактные судовые ДВС изготовляются как многоцилиндровые двигатели. Они устроены так, что рабочие такты равномерно распределяются по отдельным цилиндрам.

Принцип действия 2-тактного дизеля.

В рабочий цикл 2-тактного дизеля входят 2 такта, или 1 оборот коленчатого вала.

1-й такт, называемый сжатием, начинается, когда поршень находится в нижнем положении.

Впускные окна в боковых стенках цилиндра открыты. Через эти окна проходит предварительно сжатый продувочный воздух, давление которого должно быть выше давления находящихся в цилиндре расширившихся газов. Одновременно продувочный воздух через открытый выпускной клапан вытесняет отработавшие газы из цилиндра и наполняет цилиндр новой дозой. Когда впускные окна закрываются поршнем, к цилиндру воздух не подводится. Так как одновременно закрывается и выпускной клапан, воздух в цилиндре сжимается. Этот процесс не показан на рисунке.

Впрыскивание топлива и воспламенение происходит точно так же, как и в 4-тактном ДВС.

Во время 2-го такта — рабочего (или расширения) — расширяющиеся газы совершают механическую работу.

В конце этого такта впускные окна открываются поршнем и процесс продувки цилиндра начинается снова.

Отработавшие газы могут выйти из цилиндра через внешний клапан, либо через управляемые поршнем выпускные окна.

Под наддувом дизельного двигателя понимают подачу к цилиндрам большего количества воздуха, чем требуется для заполнения всего цилиндра при такте всасывания.

Цель наддува заключается в том, чтобы способствовать сжиганию наибольшего количества топлива за 1 рабочий цикл.

Это означает повышение мощности двигателя без увеличения его размеров (диаметра, хода и числа цилиндров), а также частоты вращения.

Наддув можно осуществлять за счет предварительного сжатия воздуха перед цилиндром.

Во всех выпускаемых 4-тактных судовых ДВС предварительное сжатие воздуха происходит с помощью центробежного компрессора, который приводится в действие газовой турбиной, работающей на отработавших газах дизеля.

Принцип действия газотурбинного нагнетателя.
1 — турбина, работающая на отработавших газах; 2 — отработавшие газы; 3 — свежий воздух; 4 — компрессор; 5 — коленчатый вал; 6 — цилиндр; 7 — поршень.

Принцип действия компрессора показан на рисунке выше. Поступивший из компрессора воздух проходит через фильтры. После открытия впускного клапана сжатый воздух подается через воздушный коллектор к соответствующим цилиндрам.

В двухтактных дизелях предварительное сжатие воздуха происходит в центробежных компрессорах, в пространстве под поршнем, а также в поршневых компрессорах, приводимых в действие двигателем. Давление наддувочного воздуха достигает 0,14-0,25 МПа. На рисунке ниже показан в разрезе главный малооборотный дизель с наддувом.

Принцип действия малооборотного двухтактного дизеля: а — предварительно сжатый воздух вытесняет отработавшие газы из цилиндра; b — одновременно происходит сжатие и всасывание; с — рабочий такт и предварительное сжатие; d — предварительно сжатый воздух вытесняет отработавшие газы из цилиндра двигателя без выходного клапана.

2-тактные дизели изготовляют в виде многоцилиндровых рядных двигателей с 10-12 цилиндрами.

Диаметр цилиндров больших 2-тактных дизелей достигает 1000 мм, ход — 1500-2000 мм.

Мощность цилиндра при общей мощности двигателя более 29 440 кВт составляет от 2900 до 3700 кВт.

В связи с этим ДВС можно использовать в качестве главных двигателей и на крупных судах.

2-тактные дизели имеют очень большие размеры и массу.

Их удельная масса достигает 40-55 кг/кВт. При мощности, например 14 720 кВт, масса составляет 600-800 т.

4-тактный дизель (рядный двигатель).
1 — наддувочный агрегат; 2 — охладитель наддувочного воздуха; 3 — трубопровод отработавших газов; 4 — трубопровод наддувочного воздуха; 5 — трубопровод охлаждающей воды; 6 — масляный трубопровод; 7 — топливный трубопровод; в — распределительный вал; 9 — приводное колесо; 10 — промежуточные шестерни; 11 — приводное колесо коленчатого вала; 12 — коленчатый вал; 13 — шатун; 14 — поршень; 15 — цилиндровая гильза; 16 — камера охлаждающей воды; 17 — крышка цилиндра; 18 — выпускной клапан; 19 — впускной клапан; 20 — топливный клапан; 21 — штанга; 22 — топливный насос; 23 — маслораэбрызгивающее кольцо; 24 — масляная ванна картера; 25 — станина двигателя; 26 — блок цилиндров.

Читайте также  Оборудование для комбикормового производства

Четырехтактные дизели применяют на судах либо в составе дизель-генераторных установок, либо в качестве главного двигателя в многовальных энергетических установках (по одному дизелю на один движитель) и, соответственно, в многодвигательных установках для одного движителя. Применение среднеоборотных дизелей в качестве главного двигателя дает следующие преимущества:

— увеличение надежности (при выходе из строя одного двигателя остальные продолжают работать);

— уменьшение габаритов и собственной массы деталей (например, клапанов, поршней, кривошипных механизмов, подшипников и т. д.);

— уменьшение удельной массы, которая в зависимости от мощности составляет от 14 до 35 кг/кВт (для мощностей около 2200 кВт).

Среднеоборотные дизели используются также в дизель-электрических энергетических установках в качестве главного двигателя.

4-тактный дизель V-образной конструкции.
1 — поршень; 2 — цилиндровая гильза; 3 — коленчатый вал.

Что такое навесное оборудование для двигателя и что входит в перечень

Двигатель без навесного оборудования не будет полноценно работать. К навесным агрегатам относятся электрооборудование, датчики, системы впуска, выпуска и охлаждения, а также насос гидроусилителя руля и компрессор кондиционера. Навесное на двигатель связано с другими системами автомобиля, они в совокупности обеспечивают нормальный режим работы машины.

Электрооборудование

На схеме двигателя для автомобилей видно, что навесное состоит из связки узлов и агрегатов, которые присоединены к мотору. В сборе с навесным оборудованием мотор работает в обычном режиме. Важнейшим из узлов в этом списке является электрооборудование – оно снабжает электроэнергией систему зажигания, бортовую электронику, заряжает аккумулятор.

Генератор

Генератор подает электричество для устройства зажигания, датчиков, бортового оборудования, он же заряжает аккумулятор. Данный узел крепится к двигателю при помощи кронштейнов. Вращение происходит от шкива коленвала благодаря приводному ремню.

После зарядки приборов генератор понижает расход тока и продолжает работать в обычном режиме. Если в машине включены одновременно обогреватель, фары, датчики, потребляемое электричество может превысить то, которое вырабатывает генератор, тогда дополнительная нагрузка быстро разрядит аккумулятор.

Вращательные движения совершаются за счет силы трения и сцепления. Генератор прикреплен к блоку болтами, для этого часто используют регулировочную планку, чтобы достигнуть нужной фиксации и натяжки.

  • статор;
  • ротор;
  • две крышки – передняя расположена со стороны привода, задняя находится над контактными кольцами;
  • регулятор;
  • диодный мост;
  • подшипник.

Устройство крепится к двигателю болтами, расположенными на кронштейнах.

Генератор имеет вентиляционные окна, через которые вентилятор выдувает воздух.

Стартер

Стартер – это электрический двигатель, который запускает мотор, коленвал и маховик. При запуске системы зажигания зубцы соединяются с венцом маховика, мотор запускается. Стартер находится сзади мотора, установлен продольно, присоединен к блоку цилиндров болтами. В корпусе располагаются 4 магнитных сердечника, их называют статором электродвигателя.

Главным узлом стартера является якорь – вал с прессованным сердечником, сделанный из специальной стали. В пазах стоят рамки, вращающиеся вокруг полюсов магнита. Рамки соприкасаются с коллектором, от него отходят 4 щетки – 2 положительные и 2 отрицательные.

  • щеткодержатель, щетки;
  • вал;
  • статор;
  • электромагнит;
  • сердечник;
  • вилка;
  • бендикс;
  • корпус.

В крышке сзади расположены держатели с пружинами, которые давят на щетки, прижимая их к коллектору, они соприкасаются. В задней части стартера стоит опорный подшипник. На корпусе имеется входной контакт, к нему подключена клемма (+) аккумулятора. Ток идет по якорным рамкам, попадает на отрицательные щетки, соединенные с клеммой (-). Появляется магнитное поле, происходит вращение якоря.

Датчики и их виды

Датчики используют во всех системах машины. Они измеряют температуру, давление масла, топлива, воздуха и охлаждающей смеси. Приборы способны преобразовывать механику в ток.

Датчик давления масла

Прибор преобразует механические движения в электросигнал, воспринимаемый блоком управления. Устанавливают датчик вблизи масляного насоса – вкручивают в блок цилиндров в нижней части двигателя. Без подачи масла трение происходит «всухую», от этого детали перегреваются и изнашиваются очень быстро.

В датчике находится чувствительный элемент – металлическая мембрана. Она оснащена резистором, изменяющим сопротивление при деформации. Измерительная схема преобразует сопротивление в ток, который передается по проводам.

Низкое или высокое давление указывает на неполадки в двигателе или на неисправность масляного насоса. При высоком давлении возможно, что засорился масляный канал или редукционный клапан, а при низком, скорее всего, ослаблена пружина или износился сам насос.

Датчик детонации

В двигателе внутреннего сгорания может возникнуть металлический стук – это явление называют детонацией. Во время работы двигателя датчик контролирует степень детонации. Прибор установлен на блоке цилиндров мотора, служит для увеличения его мощности и экономии топлива.

Датчик состоит из пьезоэлектрической пластины, на концах которой появляется напряжение. Оно зависит от амплитуды и частоты колебаний пластинки. Если напряжение возрастает выше положенного уровня, электронный блок корректирует работу системы зажигания, уменьшая угол опережения.

Датчик положения коленвала

Это электромагнитный клапан, который отслеживает рабочее положение коленвала и частоту его вращения, обеспечивает деятельность систем силового агрегата: зажигание в бензиновом моторе и впрыскивание топлива в инжекторах.

Устройство состоит из датчика положения и задающего диска. Располагают датчик в алюминиевом корпусе, который с помощью кронштейна крепится возле синхродиска, устанавливают прибор со стороны маховика.

Датчик массового расхода воздуха

ДМРВ – устройство, предназначенное для контроля объема воздуха, поступающего в цилиндры. Оно передает данные системе регулировки впрыскивания бензина. Если не будет хватать воздуха при сгорании топлива, то оно сгорит не полностью, произойдет грязный выхлоп. Если воздуха будет больше нормы, мотор не разовьет нужную мощность.

При нажатии на педаль газа датчик регулирует подачу воздуха, дроссельная заслонка открывается. Топливо поступает в камеры сгорания, двигатель работает быстрее.

Система впуска

Впускная система обеспечивает подачу воздуха в мотор и служит для формирования топливной смеси. Впускной механизм взаимодействует с системой циркуляции газов, системой впрыскивания и вакуумным усилителем тормозов. Совместное действие этих систем обеспечивает управление мотором.

Составляющие системы впуска:

  1. Воздухозаборник берет воздух из атмосферы.
  2. Воздушный фильтр очищает поступающий воздух. Его делают из бумаги, размещая ее в отдельном корпусе. У элемента ограниченный срок действия, его периодически меняют.
  3. Впускной коллектор перемещает поток воздуха в цилиндры мотора, возникает разрежение. Коллектор используют для привода впускных заслонок и при работе вакуумного усилителя тормозов.
  4. Для распределения топлива имеется топливная рампа, по ней бензин попадает в форсунки, которые крепятся к впускному коллектору.
  5. Топливный насос высокого давления предназначен для подачи определенного количества топлива, его устанавливают на мотор. Насос приводят в движение через ремень при помощи шестеренчатой передачи.
  6. Турбина или приводной компрессор подает сжатый воздух в цилиндры мотора. При этом сгорает смесь, повышается КПД. Устанавливают турбину на коллекторе или двигателе.

Для увеличения мощности в системе впуска, улучшения наполнения воздухом цилиндров применяют турбонаддув. Все составляющие впускной системы соединены патрубками.

Система выпуска

К навесному оборудованию системы выпуска автомобиля ВАЗ относится коллектор, присоединенный к ГБЦ. Элемент необходим для вывода газов из цилиндров в выхлопную трубу. Устройство находится на головке блока цилиндров и обеспечивает продувание и наполнение камеры сгорания. К нему на выходе крепится труба выпуска. Прокладка, установленная между головкой блока и выпускной трубой, предотвращает поступление выхлопа под капот.

Бывает цельный и трубчатый коллектор выпуска. В первом короткие каналы объединены в общую камеру, его делают из жаропрочного чугуна. Цельный коллектор низкоэффективный, но прост в изготовлении. Трубчатые коллекторы производят из нержавеющей стали.

Система охлаждения

Предназначена для охлаждения деталей и узлов двигателя. В систему входят термостат, радиатор, вентилятор, насос водяной и шланги для соединения. После включения мотора жидкость начинает движение по малому кругу, перемещается по рубашке охлаждения и головке цилиндров, через байпасные трубки поступает снова в насос. Параллельно она циркулирует в теплообменнике отопителя. При поднятии температуры выше нормы открывается термостат. Основной клапан отправляет влагу в радиатор, где она охлаждается воздухом. Если жидкость не остыла, дополнительно включается вентилятор, смесь продолжает циркулировать.

Читайте также  Навесное оборудование для минипогрузчиков

Помпу устанавливают в торцевой части блока двигателя. Насос обеспечивает движение жидкости для охлаждения системы.

Когда повышается температура, термостат открывает большой контур охлаждения. Прибор прогревает двигатель, поддерживает постоянный температурный режим. Устройство находится на цилиндрах под корпусом.

Без охладительной системы выйдут из строя все системы двигателя.

Другие системы

К навесному оборудованию относятся компрессор кондиционера и насос гидроусилителя руля. Насос беспрерывно работает, чтобы не допустить перепадов давления жидкости. А без компрессора перестанет работать охладительная система двигателя.

Насос гидроусилителя руля

Насос поддерживает давление жидкости. Устройство запускается от коленвала при помощи шестеренчатой или ременной передачи и работает беспрерывно, пока не выключен мотор. Когда машина едет прямо и не поворачивает, жидкость перемещается по малому кругу – от насоса в распределитель, затем в расширительный бачок. Когда золотниковый клапан закрыт, система работает в обычном режиме. Если руль повернут, открывается клапан на распределителе и жидкость попадает в силовой цилиндр.

Уменьшить изнашивание деталей помогает гидравлическая жидкость. При правильной эксплуатации насос может прослужить 8-10 лет. Насосы бывают одноконтурные и двухконтурные, у последних производительность выше.

Компрессор кондиционера

Устройство обеспечивает циркуляцию фреона в кондиционере, сжимает вещество и перегоняет его через радиатор, где оно охлаждается. Расположен компрессор в наружном блоке сплит-системы, состоит из механической части (вал, верхний и нижний фланец, цилиндр, ротор) и электродвигателя.

Ротор располагается на валу с электрическим двигателем, он приводит в движение механизм. Затем засасывает фреон, сжимает его, нагнетает хладагент под давлением радиатора.

Основная цель навесных систем – запуск силового агрегата и обеспечение его коммуникациями. Без навесного оборудования не будет полноценно функционировать двигатель и другие системы автомобиля. За оборудованием нужно постоянно следить, вовремя устранять неполадки, чтобы навесные агрегаты двигателя прослужили не один год.

Устройство современного двигателя

Устройство двигателя

Двигатель – энергосиловая машина, преобразующая какой-либо вид энергии в механическую работу. Еще двигатель называют «мотором», что было позаимствовано из немецкого языка. Различают различные типы двигателей из которых широкое распространение получили двигатели внутреннего сгорания и электрические двигатели. Существует более подробная классификация двигателей внутреннего сгорания.

Устройство двигателя внутреннего сгорания состоит из двух механизмов:

1) Кривошипно-шатунного механизма (КШМ) — преобразует прямолинейное возвратно-поступательные движения поршней, воспринимающих давление газов, во вращательное движение коленчатого вала. Детали КШМ делят на две группы: подвижные детали КШМ и неподвижные детали КШМ.

Неподвижные детали КШМ: блок цилиндров, головка цилиндров, картер маховика и сцепления, гильзы цилиндров, крышка блока, крепежные детали, кронштейны, прокладки.

2) Газораспределительного механизма (ГРМ) — служит для своевременного открытия и закрытия впускных и выпускных клапанов двигателя, обеспечивая качественное наполнение цилиндров двигателя свежим зарядом, их очистку от отработавших газов и герметизацию цилиндров при сжатии и рабочем ходе поршня.

Двигатель состоит также из пяти систем:

  • Система охлаждения — предназначена для поддержания оптимального теплового режима двигателя, чтобы он не перегревался и не переохлаждался.
  • Система смазки — служит для подвода масла к трущимся поверхно­стям деталей двигателя, частичного отвода теплоты и продуктов изнаши­вания.
  • Система питания — служит для приготовления горючей смеси из паров топлива и воздуха в определенных пропорциях, подачи ее в цилиндры двигателя и отвода из них отработавших газов.
  • Система зажигания — служит для создания тока высокого напряжения и распределения его по цилиндрам двигателя и воспламенения рабочей смеси в камере сгорания в определенные моменты.
  • Система пуска — служит для первоначального вращения коленчатого вала, что обеспечивает запуск двигателя.

Поршневые двигатели внутреннего сгорания классифицируют по следующим признакам:

1) По назначению:

2) По способу осуществления рабочего цикла:

3) По способу смесеобразования: (внешнее и внутреннее)

4) По способу воспламенения:

5) вид применяемого топлива:

6) по числу цилиндров: одноцилиндровые и многоцилиндровые

7) по расположению цилиндров: однорядные, двухрядные,V-образные.

8) по способу наполнения свежим зарядом:

9) по охлаждению: жидкостное и воздушное

Для изучения общего устройства автомобиля и остальных его элементов заходите в раздел «Устройство и ремонт автомобиля«.

Раздел 5. Главный и вспомогательные двигатели

Основные понятия

Двигателями внутреннего сгорания (ДВС) называют поршневые двигатели, в которых процесс преобразования химической энергии топлива в механическую осуществляется внутри рабочего цилиндра.

Различают ДВС карбюраторного типа и дизельные двигатели. Дизельный двигатель-это двигатель внутреннего сгорания с воспламенением от сжатия. Воспламенение горючей смеси в цилиндре дизеля происходит не от искры, как в карбюраторных ДВС, а при впрыске топлива в воздух, нагретый до высокой температуры в результате сжатия поршнем.

Из всей совокупности деталей можно условно выделить три группы. Детали остова, фундаментная рама (в сборе с рамовыми подшипниками коленчатого вала и др.), блок-картер с блоком цилиндров(в сборе с цилиндровой втулкой, крышками люков и др.) и крышки рабочих цилиндров. Эти неподвижные крупные узлы двигателя соединяются между собой болтами, анкерными связями и образуют жесткий остов, способный воспринимать усилия, возникающие во время работы дизеля.

Детали движения-коленчатый вал (в сборе с противовесами и другими насаженными на него деталями), шатуны, поршни(в сборе с поршневыми кольцами, уплотнительными и маслосъемными кольцами). Эти подвижные детали шарнирно соединены между собой и образуют кривошипно-шатунный механизм двигателя, предназначенный для преобразования возвратно-поступательного движения поршней во вращательное движение коленчатого вала.

Детали газораспределения передаточный механизм (от коленчатого вала к распределительным валам), распределительные валы (в сборе с насаженными на них шайбами впускных и выпускных клапанов и топливных насосов), привод впускных и выпускных клапанов (толкатели, штанги, коромысла).

Эта группа узлов двигателя (механизм газораспределения) синхронизирует движение коленчатого вала и клапанов в крышках рабочих цилиндров в соответствии с необходимыми моментами открытия и закрытия клапанов. Кроме того, на двигателе имеются узлы и детали, относящиеся к системам топливоподачи, смазки, охлаждения, подвода воздуха и отвода газов, пуска, регулирования и управления.

В зависимости от способа превращения тепловой энергии в механическую в двигателях подразделяют следующие типа: поршневые, у которых возвратно-поступательное движение поршней под давлением рабочей силы преобразуется во вращательное движение вала, турбинные-вал вращается под действием скоростного потока частиц пара или газа, воздействующего на лопатки насаженного на вал рабочего колеса, реактивные, у которых тяга создается под влиянием реакции струи газов, вытекающей из сопла двигателя. На современных судах устанавливаются главные двигатели: ДВС, паровые турбины, газовые турбины.

Общие сведения

Классификация судовых двигателей:

По способу осуществления рабочего цикла

Четырехтактные(Ч) рабочий цикл за 4 хода поршня и 2 оборота коленчатого вала

Двухтактные (Д) рабочий цикл за 2 хода поршня и 1 оборот коленчатого вала

По способу действия

Простого(рабочий цикл осуществляется только в верхней полости)

Двойного действия (горение над поршнем и под ним)

С противоположно движущимися поршнями

По роду рабочего цикла (способ подвода теплоты)

С подводом теплоты при V=const-изохорный (Цикл Отто)

С подводом теплоты при P=const-изобарный (Цикл Дизеля)

Смешанный подвод (Цикл Тринклера)

Тип главного двигателя:

Легкое жидкое (бензин, керосин)

Тяжелое жидкое (соляра, мазут)

Газообразное (пропан, бутан)

По способу смесеобразования

По конфигурации камер сгорания

С разделенными двумя или более полостями

По способу воспламенения

С принудительным зажиганием

По конструктивному выполнению

По расположению цилиндров

По возможности изменения направления вращения коленчатого вала

Не реверсивные (одно постоянное вращение)

Реверсивное (направление вращения осуществляется особым реверсивные механизмом, изменяющим фазы газораспределения)

По частоте вращения коленчатого вала (n-об/мин)

Малооборотные (МОД 100

Вспомогательные (судовые не реверсивные), приводящие в действие вспомогательные механизмы машиной установки (дизель-генератор, дизель-компрессор)

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.