Что называется двигателем внутреннего сгорания?

maxx096 › Блог › Двигатель внутреннего сгорания (устройство и принцип работы).

Продолжаем познавательную страничку.

В настоящее время двигатель внутреннего сгорания является основным видом автомобильного двигателя. Двигателем внутреннего сгорания (сокращенное наименование – ДВС) называется тепловая машина, преобразующая химическую энергию топлива в механическую работу.

Различают следующие основные типы ДВС:

• Поршневой двигатель внутреннего сгорания;
• Роторно-поршневой двигатель внутреннего сгорания;
• Газотурбинный двигатель внутреннего сгорания.

Из представленных типов двигателей самым распространенным является поршневой ДВС, поэтому устройство и принцип работы рассмотрены на его примере.

Достоинствами поршневого двигателя внутреннего сгорания, обеспечившими его широкое применение, являются:

Автономность;
• Универсальность
(сочетание с различными потребителями);
• Невысокая стоимость;
• Компактность;
• Малая масса;
• Возможность быстрого запуска;
• Многотопливность.

Вместе с тем, двигатели внутреннего сгорания имеют ряд существенных недостатков, к которым относятся:

• Высокий уровень шума;
• Большая частота вращения коленчатого вала;
• Токсичность отработавших газов;
• Невысокий ресурс;
• Низкий коэффициент полезного действия.

В зависимости от вида применяемого топлива различают следующие поршенвые ДВС:

Бензиновые двигатели;
• Дизельные двигатели.

Альтернативными видами топлива, используемыми в двигателях внутреннего сгорания, являются природный газ, спиртовые топлива – метанол и этанол, водород.

Водородный двигатель с точки зрения экологии является перспективным, т.к. не создает вредных выбросов. Наряду с ДВС водород используется для создания электрической энергии в топливных элементах автомобилей.

Поршневой двигатель внутреннего сгорания имеет следующее общее устройство:

• Корпус;
• Кривошипно-шатунный механизм;
• Газораспределительный механизм;
• Впускная система;
• Топливная система;
• Система зажигания
(бензиновые двигатели);
• Система смазки;
• Система охлаждения;
• Выпускная система;
• Система управления.

Корпус двигателя объединяет блок цилиндров и головку блока цилиндров. Кривошипно-шатунный механизм преобразует возвратно-поступательное движение поршня во вращательное движение коленчатого вала. Газораспределительный механизм обеспечивает своевременную подачу в цилиндры воздуха или топливно-воздушной смеси и выпуск отработавших газов.

Впускная система предназначена для подачи в двигатель воздуха. Топливная система питает двигатель топливом. Совместная работа данных систем обеспечивает образование топливно-воздушной смеси. Основу топливной системы составляет система впрыска.

Система зажигания осуществляет принудительное воспламенение топливно-воздушной смеси в бензиновых двигателях. В дизельных двигателях происходит самовоспламенение смеси.

Система смазки выполняет функцию снижения трения между сопряженными деталями двигателя. Охлаждение деталей двигателя, нагреваемых в результате работы, обеспечивает система охлаждения. Важные функции отвода отработавших газов от цилиндров двигателя, снижения их шума и токсичности предписаны выпускной системе.

Система управления двигателем обеспечивает электронное управление работой систем двигателя внутреннего сгорания.

Принцип работы двигателя внутреннего сгорания основан на эффекте теплового расширения газов, возникающего при сгорании топливно-воздушной смеси и обеспечивающего перемещение поршня в цилиндре.

Работа поршневого ДВС осуществляется циклически. Каждый рабочий цикл происходит за два оборота коленчатого вала и включает четыре такта (четырехтактный двигатель):

• Впуск;
• Сжатие;
• Рабочий ход;
• Выпуск.

Во время тактов впуск и рабочий ход происходит движение поршня вниз, а тактов сжатие и выпуск – вверх. Рабочие циклы в каждом из цилиндров двигателя не совпадают по фазе, чем достигается равномерность работы ДВС. В некоторых конструкциях двигателей внутреннего сгорания рабочий цикл реализуется за два такта – сжатие и рабочий ход (двухтактный двигатель).

На такте впуск впускная и топливная системы обеспечивают образование топливно-воздушной смеси. В зависимости от конструкции смесь образуется во впускном коллекторе (центральный и распределенный впрыск бензиновых двигателей) или непосредственно в камере сгорания (непосредственный впрыск бензиновых двигателей, впрыск дизельных двигателей). При открытии впускных клапанов газораспределительного механизма воздух или топливно-воздушная смесь за счет разряжения, возникающего при движении поршня вниз, подается в камеру сгорания.

На такте сжатия впускные клапаны закрываются, и топливно-воздушная смесь сжимается в цилиндрах двигателя.

Такт рабочий ход сопровождается воспламенением топливно-воздушной смеси (принудительное или самовоспламенение). В результате возгорания образуется большое количество газов, которые давят на поршень и заставляют его двигаться вниз. Движение поршня через кривошипно-шатунный механизм преобразуется во вращательное движение коленчатого вала, которое затем используется для движения автомобиля.

При такте выпуск открываются выпускные клапаны газораспределительного механизма, и отработавшие газы удаляются из цилиндров в выпускную систему, где производится их очистка, охлаждение и снижение шума. Далее газы поступают в атмосферу.

Рассмотренный принцип работы двигателя внутреннего сгорания позволяет понять, почему ДВС имеет небольшой коэффициент полезного действия — порядка 40%. В конкретный момент времени как правило только в одном цилиндре совершается полезная работа, в остальных – обеспечивающие такты: впуск, сжатие, выпуск.

Вот так вот, Друзья! Благодарю за внимание!

Принцип работы и устройство двигателя

Двигатель внутреннего сгорания называется так потому что топливо воспламеняется непосредственно внутри его рабочей камеры, а не в дополнительных внешних носителях. Принцип работы ДВС основан на физическом эффекте теплового расширения газов, образующихся в процессе сгорания топливно-воздушной смеси под давлением внутри цилиндров двигателя. Выделяемая в этом процессе энергия преобразуется в механическую работу.


В процессе эволюции ДВС выделились несколько типов двигателей, их классификация и общее устройство:

  • Поршневые двигатели внутреннего сгорания. В них рабочая камера находится внутри цилиндров, а тепловая энергия преобразуется в механическую работу посредством кривошипно-шатунного механизма, передающего энергию движения на коленчатый вал. Поршневые моторы делятся, в свою очередь, на:
    • карбюраторные, в которых воздушно-топливная смесь формируется в карбюраторе, впрыскивается в цилиндр и воспламеняется там искрой от свечи зажигания;
    • инжекторные, в которых смесь подаётся напрямую во впускной коллектор, через специальные форсунки, под контролем электронного блока управления, и также воспламеняется посредством свечи;
    • дизельные, в которых воспламенение воздушно-топливной смеси происходит без свечи, посредством сжатия воздуха, который от давления нагревается до температуры, превышающей температуру горения, а топливо впрыскивается в цилиндры через форсунки.
  • Роторно-поршневые двигатели внутреннего сгорания. Здесь тепловая энергия преобразуется в механическую работу посредством вращения рабочими газами ротора специальной формы и профиля. Ротор движется по «планетарной траектории» внутри рабочей камеры, имеющей форму «восьмёрки», и выполняет функции как поршня, так и ГРМ (газораспределительного механизма), и коленчатого вала.
  • Газотурбинные двигатели внутреннего сгорания. Особенности их устройства заключаются в преображении тепловой энергии в механическую работу с помощью вращения ротора со специальными клиновидными лопатками, который приводит в движение вал турбины.

Далее рассматриваются только поршневые двигатели, так как только они получили широкое распространение в автомобильной промышленности. Основные причины тому: надежность, стоимость производства и обслуживания, высокая производительность.

Устройство двигателя внутреннего сгорания

Первые поршневые ДВС имели лишь один цилиндр небольшого диаметра. В дальнейшем, для увеличения мощности сначала увеличивали диаметр цилиндра, а потом и их количество. Постепенно двигатели внутреннего сгорания приняли привычный нам вид. “Сердце” современного автомобиля может иметь до 12 цилиндров.

Наиболее простым является двигатель с рядным расположением цилиндров. Однако, с увеличением количества цилиндров растет и линейный размер двигателя. Поэтому появился более компактный вариант расположения — V-образный. При таком варианте цилиндры расположены под углом друг к другу (в пределах 180-ти градусов). Обычно используется для 6-цилиндровых двигателей и более.

Одна из основных частей двигателя — цилиндр (6), в котором находится поршень (7), соединенный через шатун (9) с коленчатым валом (12). Прямолинейное движение поршня в цилиндре вверх и вниз шатун и кривошип преобразуют во вращательное движение коленчатого вала.

На конце вала закреплен маховик (10), назначение которого придавать равномерность вращению вала при работе двигателя. Сверху цилиндр плотно закрыт головкой блока цилиндров (ГБЦ), в которой находятся впускной (5) и выпускной (4) клапаны, закрывающие соответствующие каналы.

Клапаны открываются под действием кулачков распределительного вала (14) через передаточные механизмы (15). Распределительный вал приводится во вращение шестернями (13) от коленчатого вала.
Для уменьшения потерь на преодоление трения, отвод теплоты, предотвращения задиров и быстрого износа трущиеся детали смазывают маслом. В целях создания нормального теплового режима в цилиндрах двигатель должен охлаждаться.

Но главная задача – заставить работать поршень, ведь именно он является главной движущей силой. Для этого в цилиндры должны подаваться горючая смесь в определенной пропорции (у бензиновых) или отмеренные порции топлива в строго определенный момент под высоким давлением (у дизелей). Топливо воспламеняется в камере сгорания, отбрасывает поршень с большой силой вниз, тем самым приводя его в движение.

Принцип работы двигателя

Из-за низкой производительности и высокого расхода топлива 2-тактных двигателей практически все современные двигатели производят с 4-тактными циклами работы:

  1. Впуск топлива;
  2. Сжатие топлива;
  3. Сгорание;
  4. Вывод отработанных газов за пределы камеры сгорания.

Точка отсчета — положение поршня вверху (ВМТ — верхняя мертвая точка). В данный момент впускное отверстие открывается клапаном, поршень начинает движение вниз и засасывает топливную смесь в цилиндр. Это первый такт цикла.

Во время второго такта поршень достигает самой нижней точки (НМТ — нижняя мертвая точка), при этом впускное отверстие закрывается, поршень начинает движение вверх, из-за чего топливная смесь сжимается. При достижении поршнем максимальной верхней точки топливная смесь сжата до максимума.

Третий этап – это поджигание сжатой топливной смеси с помощью свечи, которая испускает искру. В результате горючий состав взрывается и толкает поршень с большой силой вниз.

На заключительном этапе поршень достигает нижней границы и по инерции возвращается к верхней точке. В это время открывается выпускной клапан, отработанная смесь в виде газа выходит из камеры сгорания и через выхлопную систему попадает на улицу. После этого цикл, начиная с первого этапа, повторяется снова и продолжается в течение всего времени работы двигателя.

Описанный выше способ является универсальным. По такому принципу построена работа практически всех бензиновых моторов. Дизельные двигатели отличаются тем, что там нет свеч зажигания – элемента, который поджигает топливо. Детонация дизельного топлива осуществляется благодаря сильному сжатию топливной смеси. При такте «впуск» в цилиндры дизеля поступает чистый воздух. Во время такта «сжатие» воздух нагревается до 600О С. В конце этого такта в цилиндр впрыскивается определенная порция топлива, которое самовоспламеняется.

Системы двигателя

Вышеописанное представляет собой БЦ (блок цилиндров) и КШМ (кривошипно-шатунный механизм). Помимо этого современный ДВС состоит и из других вспомогательных систем, которые для удобства восприятия группируют следующим образом:

  1. ГРМ (механизм регулировки фаз газораспределения);
  2. Система смазки;
  3. Система охлаждения;
  4. Система подачи топлива;
  5. Выхлопная система.

ГРМ — газораспределительный механизм

Чтобы в цилиндр поступало нужное количество топлива и воздуха, а продукты сгорания вовремя удалялись из рабочей камеры, в ДВС предусмотрен механизм, называемый газораспределительным. Он отвечает за открытие и закрытие впускных и выпускных клапанов, через которые в цилиндры поступает топливо-воздушная горючая смесь и удаляются выхлопные газы. К деталям ГРМ относятся:

  • Распределительный вал;
  • Впускные и выпускные клапаны с пружинами и направляющими втулками;
  • Детали привода клапанов;
  • Элементы привода ГРМ.

ГРМ приводится в действие от коленчатого вала двигателя автомобиля. С помощью цепи или ремня вращение передается на распределительный вал, который посредством кулачков или коромысел через толкатели нажимает на впускной или выпускной клапан и по очереди открывает и закрывает их.

Система смазки

В любом моторе есть множество трущихся деталей, которые необходимо постоянно смазывать, чтобы уменьшить потери мощности на трение и избежать повышенного износа и заклинивания. Для этого существует система смазки. Попутно с ее помощью решается еще несколько задач: защита деталей двигателя внутреннего сгорания от коррозии, дополнительное охлаждение деталей мотора, а также удаление продуктов износа из мест соприкосновения трущихся частей. Систему смазки двигателя автомобиля образуют:

  • Масляный картер (поддон);
  • Насос подачи масла;
  • Масляный фильтр с редукционным клапаном;
  • Маслопроводы;
  • Масляный щуп (индикатор уровня масла);
  • Указатель давления в системе;
  • Маслоналивная горловина.
Читайте также  Как отрегулировать клапана на газели двигатель 4216?

Система охлаждения

Во время работы мотора его детали соприкасаются с раскаленными газами, которые образуются при сгорании топливо-воздушной смеси. Чтобы детали двигателя внутреннего сгорания не разрушались из-за чрезмерного расширения при нагреве, их необходимо охлаждать. Охладить мотор автомобиля можно с помощью воздуха или жидкости. Современные моторы имеют, как правило, жидкостную схему охлаждения, которую образуют следующие части:

  • Рубашка охлаждения двигателя;
  • Насос (помпа);
  • Термостат;
  • Радиатор;
  • Вентилятор;
  • Расширительный бачок.

Система подачи топлива

Система питания для двигателей внутреннего сгорания с воспламенением от искры и от сжатия отличаются друг от друга, хотя и имеют ряд общих элементов. Общими являются:

  • Топливный бак;
  • Датчик уровня топлива;
  • Фильтры очистки топлива — грубой и тонкой;
  • Топливные трубопроводы;
  • Впускной коллектор;
  • Воздушные патрубки;
  • Воздушный фильтр.

В обеих системах имеются топливные насосы, топливные рампы, форсунки подачи топлива, сам принцип подачи одинаков: топливо из бака с помощью насоса через фильтры подается в топливную рампу, из которой попадает в форсунки. Но если в большинстве бензиновых двигателей внутреннего сгорания форсунки подают его во впускной коллектор мотора автомобиля, то в дизельных оно подается непосредственно в цилиндр, и уже там смешивается с воздухом.

Выхлопная система

Система выхлопа предназначена для отвода отработанных газов из цилиндров двигателя автомобиля. Основные детали, ее составляющие:

  • Выпускной коллектор;
  • Приемная труба глушителя;
  • Резонатор;
  • Глушитель;
  • Выхлопная труба.

В современных двигателях внутреннего сгорания выхлопная конструкция дополнена устройствами нейтрализации вредных выбросов. Она состоит из каталитического нейтрализатора и датчиков, сообщающихся с блоком управления двигателем. Выхлопные газы из выпускного коллектора через приемную трубу попадают в каталитический нейтрализатор, затем через резонатор в глушитель. Далее через выхлопную трубу они выбрасываются в атмосферу.

Разновидности ДВС: какие существуют двигатели внутреннего сгорания

Поршневой ДВС (двигатель внутреннего сгорания) является тепловой машиной и работает по принципу сжигания смеси топлива и воздуха в камере сгорания. Главной задачей такого устройства выступает преобразование энергии сгорания топливного заряда в механическую полезную работу.

Не смотря на общий принцип действия, сегодня существует большое количество агрегатов, которые существенно отличаются друг от друга благодаря целому ряду индивидуальных конструктивных особенностей. В этой статье мы поговорим о том, какие бывают двигатели внутреннего сгорания, а также в чем состоят их главные особенности и отличия.

Типы двигателей внутреннего сгорания

Начнем с того, что ДВС может быть двухтактным и четырехтактным. Что касается автомобильных моторов, указанные агрегаты четырехтактные. Такты работы двигателя представляют собой:

  • впуск топливно-воздушной смеси или воздуха (что зависит от типа ДВС);
  • сжатие смеси горючего и воздуха;
  • сгорание топливного заряда и рабочий ход;
  • выпуск из камеры сгорания отработавших газов;

По такому принципу работают как бензиновые, так и дизельные поршневые моторы, которые нашли широкое применение в автомобилях и на другой технике. Также стоит упомянуть и агрегаты на газу, в которых газовое топливо сжигается аналогично дизтопливу или бензину.

Бензиновые силовые агрегаты

Что касается поршневых бензиновых моторов, такие двигатели имеют систему зажигания для воспламенения рабочей смеси от искры. Системы питания в таких агрегатах могут быть карбюраторными или инжекторными (впрысковыми).

Приготовление рабочей смеси в карбюраторных ДВС происходит в карбюраторе, далее смешанный бензин и воздух подаются во впускной коллектор. Сегодня такие системы считаются устаревшими, так как не способны обеспечить двигателю должную экологичность и экономичность.

Впрысковые ДВС по типу конструкции системы питания бывают моноинжекторными (моновпрыск) или системами с распределенным впрыском. В первом случае схема предполагает наличие только одной форсунки, которая впрыскивает горючее во впускной коллектор. Решения с распределенным впрыском имеют отдельную форсунку на каждый цилиндр, которая установлена рядом с впускными клапанами.

Дальнейшее развитие систем топливоподачи привело к появлению моторов с прямым (непосредственным) впрыском. Главным их отличием от предшественников является то, что воздух и топливо подается в камеру сгорания отдельно. Другими словами, форсунка устанавливается не над впускными клапанами, а монтируется прямо в цилиндр.

Подобное решение позволяет подавать топливо напрямую, причем сама подача разделена на несколько этапов (подвпрысков). В результате удается добиться максимально эффективного и полноценного сгорания топливного заряда, двигатель получает возможность работать на бедной смеси (например, моторы семейства GDI), падает расход топлива, снижается токсичность выхлопа и т.д.

Дизельные моторы

Дизельный двигатель работает на дизтопливе, а также в значительной мере отличается от бензинового. Основное отличие заключается в отсутствии искровой системы зажигания. Воспламенение смеси топлива и воздуха в дизеле происходит от сжатия.

Если просто, сначала в цилиндрах сжимается воздух, который сильно нагревается. В последний момент происходит впрыск солярки прямо в камеру сгорания, после чего нагретая и сильно сжатая смесь воспламеняется самостоятельно.

Однако в списке минусов таких агрегатов можно выделить чувствительную топливную систему, а также больший вес и меньшие скорости в режиме максимальных оборотов. Дело в том, что дизель изначально «тихоходный» и имеет меньшую частоту вращения коленчатого вала по сравнению с бензиновыми ДВС.

Дизели также отличаются большей массой, так как особенности воспламенения от сжатия предполагают более серьезные нагрузки на все элементы такого агрегата. Другими словами, детали в дизельном моторе более прочные и тяжелые. Также дизельные моторы более шумные, что обусловлено процессом воспламенения и сгорания дизельного топлива.

Роторный двигатель

Двигатель Ванкеля (роторно-поршневой двигатель) представляет собой принципиально иную силовую установку. В таком ДВС привычные поршни, которые совершают возвратно-поступательные движения в цилиндре, попросту отсутствуют. Главным элементом роторного мотора является ротор.

Указанный ротор вращается по заданной траектории. Роторные ДВС бензиновые, так как подобная конструкция не способна обеспечить высокую степень сжатия рабочей смеси.

Если говорить о минусах, то стоит выделить заметно сниженный ресурс сравнительно с поршневыми агрегатами, а также высокий расход топлива. Также роторный двигатель отличается повышенной токсичностью, то есть не совсем вписывается в современные экологические стандарты.

Гибридный двигатель

Гибридный силовой агрегат фактически является сочетанием поршневого бензинового или дизельного ДВС и электромотора. Также в конструкции присутствует тяговая аккумуляторная батарея, которая питает электродвигатель.

Также во время работы гибридной установки активно используется схема рекуперации энергии. Например, во время торможения двигателем работает генератор, который подзаряжает тяговый аккумулятор. Такое сочетание двух типов силовых установок позволяет получить улучшение разгонной динамики (особенно когда одновременно задействован ДВС и электромотор), наблюдается существенная экономия топлива и малый выброс токсичного выхлопа.

Компоновка и технические характеристики ДВС

Еще стоит добавить, что существуют многочисленные разновидности двигателей внутреннего сгорания, которые отличаются друг от друга по компоновке и расположению цилиндров.

Дело в том, что пространство в моторном отсеке ограничено, при этом на разных автомобилях возникает необходимость уместить в таком пространстве агрегат с тем или иным количеством цилиндров.

Как правило, по компоновке на большинстве машин чаще всего можно встретить:

  • рядный двигатель;
  • V-образный мотор;
  • оппозитный двигатель;

Рядный двигатель означает, что все его цилиндры расположены в одной плоскости. Рядные «четверки» (4-х цилиндровый мотор) являются самым распространенным типом ДВС. Рядные «шестерки» также весьма популярны, они меньше вибрируют, имеют приемлемую мощность, однако такой двигатель получается достаточно длинным.

Еще одним вариантом является V-образный двигатель. Цилиндры в таком моторе располагаются в двух плоскостях, напоминая литеру «V». Подобный ДВС имеет 6 или 8 цилиндров (V6 или V8), при этом длина двигателя сравнительно с рядным мотором меньше, хотя ширина закономерно увеличивается. Еще добавим, что угол между плоскостями принято называть углом развала.

Добавим, что существуют так называемые двигатели типа VR. Их особенностью является малый угол развала, позволяя уменьшить размеры ДВС в длину и ширину. Также стоит упомянуть мощные W-двигатели. Указанные силовые агрегаты многоцилиндровые (например, W12) Что касается компоновки, конструкция может включать в себя сразу три ряда цилиндров, которые расположены под большим углом развала.

Еще одним вариантом является расположение тех же трех рядов цилиндров, при этом угол развала максимально уменьшен (как и в случае с VR-компоновкой). Как правило, именно последний вариант прижился на мощных легковых авто класса «премиум», спорткарах и солидных внедорожниках. Дело в том, что даже при таком количестве цилиндров двигатель все равно отличается компактностью.

Основные технические параметры ДВС

Двигатели внутреннего сгорания также имеют целый ряд характеристик и параметров, которые закладываются конструктивно. Если просто, речь идет о рабочем объеме, степени сжатия, мощности и крутящем моменте и т.д.

Естественно, чем большим окажется показатель крутящего момента, тем большей будет тяга. Другими словами, от данного показателя зависит разгонная динамика. Что касается мощности двигателя, это величина, которая отображает произведенную работу за единицу времени.

Увеличение крутящего момента и мощности возможно посредством двух способов:

  • больший рабочий объем;
  • сжигание большего количества топливно-воздушной смеси;

Если просто, в первом случае речь идет о физическом увеличении камеры сгорания и объема цилиндров. Во втором подразумевается принудительная подача воздуха в цилиндры под давлением для сжигания большего количества топлива.

Как правило, мощные двигатели с большим объемом атмосферные, то есть «засасывают» наружный воздух в цилиндры самостоятельно благодаря возникающему разрежению от движения поршней. Мощные агрегаты, при этом обладающие меньшим объемом, оснащаются механическими компрессорами или турбонаддувом. В таких ДВС воздух нагнетается принудительно, то есть поступает в камеру сгорания под давлением.

Что в итоге

Как видно, приведенный выше материал дает общее представление о том, какие есть двигатели внутреннего сгорания. При этом даже с учетом общего принципа действия, силовые агрегаты могут значительно отличаться по таким показателям, как компоновка, мощность, крутящий момент, расход горючего и т.д.

Более того, даже двигатели, схожие по конструкции (например, рядный четырехцилиндровый мотор), могут иметь разное количество впускных и выпускных клапанов на один цилиндр (например, 8-и и 16-клапанные моторы).

По этой причине для объективной оценки производительности того или иного двигателя на разных оборотах, причем не на коленвалу, а на колесах, необходимо проводить специальные комплексные замеры на динамометрическом стенде.

Усовершенствание конструкции поршневого двигателя, отказ от КШМ: бесшатунный двигатель, а также двигатель без коленвала. Особенности и перспективы.

Моторы линейки TSI. Конструктивные особенности, преимущества и недостатки. Модификации с одним и двумя нагнетателями. Рекомендации по эксплуатации.

Конструктивные особенности двигателей GDI с непосредственным впрыском от моторов с распределенным впрыском топлива. Режимы работы, неисправности GDI.

Дизельный мотор TDI. Отличительные особенности двигателя данного типа. Преимущества и недостатки, ресурс, особенности турбонаддува. советы по эксплуатации.

Двигатель семейства FSI: отличия, особенности, плюсы и минусы силового агрегата данного типа. Распространенные проблемы двигателей FSI, обслуживание мотора.

Линейка дизельных двигателей CRDi Hyundai/KIA: сильные и слабые стороны моторов данного типа, особенности эксплуатации, ремонта и обслуживания.

Как же устроен ДВС

Двигатель внутреннего сгорания – это основной вид автомобильных силовых агрегатов на сегодняшний день. Принцип работы двигателя внутреннего сгорания основывается на эффекте теплового расширения газов, возникающего во время сгорания в цилиндре топливно-воздушной смеси.

  1. Самые распространенные виды двигателей
  2. Общее устройство ДВС
  3. Рабочий цикл мотора
  4. Двухтактные моторы

Самые распространенные виды двигателей

Существует три разновидности ДВС: поршневой, роторно-поршневой силовой агрегат системы Ванкеля и газотурбинный. За редким исключением на современные авто устанавливаются четырехтактные поршневые моторы. Причина кроется в низкой цене, компактности, малом весе, многотопливности и возможности установки практически на любые транспортные средства.

Сам по себе двигатель автомобиля – это механизм, преобразующий тепловую энергию горящего топлива в механическую, работу которого обеспечивает множество систем, узлов и агрегатов. Поршневые ДВС бывают двух- и четырехтактными. Понять принцип работы двигателя автомобиля проще всего на примере четырехтактного одноцилиндрового силового агрегата.

Читайте также  Ресурс двигателя на метане

Четырехтактным мотор называется потому, что один рабочий цикл состоит из четырех движений поршня (тактов) или двух оборотов коленчатого вала:

  • впуск;
  • сжатие;
  • рабочий ход;
  • выпуск.

Общее устройство ДВС

Чтобы понять принцип работы мотора, необходимо в общих чертах представить его устройство. Основными частями являются:

  1. блок цилиндров (в нашем случае цилиндр один);
  2. кривошипно-шатунный механизм, состоящий из коленчатого вала, шатунов и поршней;
  3. головка блока с газораспределительным механизмом (ГРМ).


Кривошипно-шатунный механизм обеспечивает преобразование поступательно-возвратного движения поршней во вращение коленчатого вала. Поршни приходят в движение благодаря энергии сгорающего в цилиндрах топлива.

Работа данного механизма невозможна без работы механизма газораспределения, который обеспечивает своевременное открытие впускных и выпускных клапанов для впуска рабочей смеси и выпуска отработавших газов. Состоит ГРМ из одного или нескольких распределительных валов, имеющих кулачки, толкающие клапаны (не менее двух на каждый цилиндр), клапанов и возвратных пружин.

Двигатель внутреннего сгорания способен работать только при слаженной работе вспомогательных систем, к которым относятся:

  • система зажигания, отвечающая за воспламенение горючей смеси в цилиндрах;
  • впускная система, обеспечивающая подачу воздуха для образования рабочей смеси;
  • топливная система, обеспечивающая непрерывную подачу топлива и получение смеси горючего с воздухом;
  • система смазки, предназначенная для смазывания трущихся деталей и удаления продуктов износа;
  • выхлопная система, которая обеспечивает удаление отработавших газов из цилиндров ДВС и снижение их токсичности;
  • система охлаждения, необходимая для поддержания оптимальной температуры для работы силового агрегата.

Рабочий цикл мотора

Как было сказано выше, цикл состоит из четырех тактов. Во время первого такта кулачок распредвала толкает впускной клапан, открывая его, поршень начинает двигаться из крайнего верхнего положения вниз. При этом в цилиндре создается разрежение, благодаря которому в цилиндр поступает готовая рабочая смесь, либо воздух, если двигатель внутреннего сгорания оснащен системой непосредственного впрыска топлива (в таком случае горючее смешивается с воздухом непосредственно в камере сгорания).

Поршень через шатун сообщает движение коленчатому валу, поворачивая его на 180 градусов к моменту достижения крайнего нижнего положения.

Во время второго такта – сжатия – впускной клапан (или клапаны) закрывается, поршень меняет направление движения на противоположное, сжимая и нагревая рабочую смесь или воздух. По окончанию такта, системой зажигания на свечу подается электрический разряд, и образуется искра, поджигающая сжатую топливно-воздушную смесь.

Принцип воспламенения горючего у дизельного ДВС иной: в завершении такта сжатия, через форсунку, в камеру сгорания впрыскивается мелкораспыленное дизтопливо, где оно смешивается с нагретым воздухом, и происходит самовоспламенение получившейся смеси. Необходимо отметить, что по этой причине степень сжатия дизеля намного выше.

Коленвал тем временем повернулся еще на 180 градусов, сделав один полный оборот.

Третий такт именуется рабочим ходом. Образующиеся во время сгорания топлива газы, расширяясь, толкают поршень в крайнее нижнее положение. Поршень передает энергию коленвалу через шатун и поворачивает его еще на пол-оборота.

По достижении нижней мертвой точки начинается заключительный такт – выпуск. В начале данного такта кулачок распределительного вала толкает и открывает выпускной клапан, поршень движется вверх и выгоняет отработавшие газы из цилиндра.

ДВС, устанавливаемые на современные автомобили, имеют не один цилиндр, а несколько. Для равномерной работы мотора в один и тот же момент времени в разных цилиндрах выполняются разные такты, и каждые пол-оборота коленвала как минимум в одном цилиндре происходит рабочий ход (исключение составляют 2- и 3-цилиндровые моторы). Благодаря этому удается избавиться от лишних вибраций, уравновешивая силы, действующие на коленвал и обеспечить ровную работу ДВС. Шатунные шейки расположены на валу под равными углами относительно друг друга.

Из соображений компактности многоцилиндровые моторы делают не рядными, а V-образными или оппозитными (визитная карточка фирмы Subaru). Это позволяет сэкономить немало пространства под капотом.

Двухтактные моторы

Помимо четырехтактных поршневых ДВС существуют двухтактные. Принцип их работы несколько отличается от описанного выше. Устройство такого мотора проще. В цилиндре имеется для окна – впускное и выпускное, расположенное выше. Поршень, находясь в НМТ, перекрывает впускное окно, затем, двигаясь вверх, перекрывает выпускное и сжимает рабочую смесь. По достижении им ВМТ на свече образуется искра и поджигает смесь. В это время впускное окно оказывается открытым, и через него в кривошипную камеру попадает очередная доза топливно-воздушной смеси.

Во время второго такта, двигаясь вниз под воздействием газов, поршень открывает выпускное окно, через которое отработавшие газы выдуваются из цилиндра новой порцией рабочей смеси, которая попадает в цилиндр через продувочный канал. Частично рабочая смесь при этом также уходит в выпускное окно, что объясняет прожорливость двухтактного ДВС.
» alt=»»>
Подобный принцип работы позволяет достичь большей мощности двигателя при меньшем рабочем объеме, однако за это приходится расплачиваться большим расходом топлива. К преимуществам таких моторов можно отнести более равномерную работу, простую конструкцию, малый вес и высокую удельную мощность. Из недостатков следует упомянуть более грязный выхлоп, отсутствие систем смазки и охлаждения, что грозит перегревом и выходом агрегата из строя.

Все о двигателях внутреннего сгорания: устройство, принцип работы и тюнинг

Двигатель внутреннего сгорания – это такой тип мотора, у которого топливо воспламеняется в рабочей камере внутри, а не в дополнительных внешних носителях. ДВС преобразует давление от сгорания топлива в механическую работу.

Из истории

Первый ДВС являлся силовым агрегатом Де Риваза, по имени его создателя Франсуа де Риваза, родом из Франции, который сконструировал его в 1807 году.

В этом двигателе уже было искровое зажигание, он был шатунный, с поршневой системой, то есть, это своего рода прообраз современных моторов.

Спустя 57 лет соотечественник де Риваза Этьен Ленуар изобрел уже двухтактный агрегат. Этот агрегат имел горизонтальное расположение своего единственного цилиндра, наличествовал искровым зажиганием и работал на смеси светильного газа с воздухом. Работы двигателя внутреннего сгорания в то время хватало уже на малогабаритные лодки.

Еще через 3 года конкурентом стал немец Николаус Отто, детищем которого стал уже четырехтактный атмосферный мотор с вертикальным цилиндром. КПД в данном случае увеличился на 11%, в отличие от кпд двигателя внутреннего сгорания Риваза, он стал 15-процентным.

Чуть позже, в 80-х годах этого же столетия, российский конструктор Огнеслав Костович впервые запустил агрегат карбюраторного типа, а инженеры из Германии Даймлер и Майбах усовершенствовали его в облегченный вид, который стал устанавливаться на мото- и автотехнике.

В 1897 году Рудольф Дизель выводит в свет ДВС по типу воспламенения от сжатия, используя нефть в качестве топлива. Этот вид двигателя стал родоначальником дизельных моторов, использующихся по настоящее время.

Виды двигателей

  • Бензиновые моторы карбюраторного типа работают от топлива, смешанного с воздухом. Смесь эта предварительно подготавливается в карбюраторе, далее поступает в цилиндр. В нем смесь сжимается, воспламеняется искрой от свечи зажигания.
  • Инжекторные двигатели отличаются тем, что смесь подается напрямую от форсунок во впускной коллектор. У этого вида имеются две системы впрыска – моновпрыск и распределенный впрыск.
  • В дизельном моторе воспламенение происходит без свечей зажигания. В цилиндре данной системы находится воздух, разогретый до температуры, которая превышает температуру воспламенения топлива. В этот воздух через форсунку подается топливо, и вся смесь воспламеняется по образу факела.
  • Газовый ДВС имеет принцип теплового цикла, топливом может являться как природный газ, так и углеводородный. Газ поступает в редуктор, где давление его стабилизируется в рабочее. Затем попадает в смеситель, а в итоге воспламеняется в цилиндре.
  • Газодизельные ДВС работают по принципу газовых, только в отличие от них, смесь воспламеняется не свечой, а дизельным топливом, впрыск которого происходит также, как и у обычного дизельного мотора.
  • Роторно-поршневые типы двигателей внутреннего сгорания принципиально отличаются от остальных наличием ротора, который вращается в камере, имеющей форму восьмерки. Чтобы понять, что такое ротор, нужно усвоить, что в данном случае ротор выполняет роль поршня, ГРМ и коленчатого вала, то есть специальный механизм ГРМ здесь полностью отсутствует. При одном обороте происходит сразу три рабочих цикла, что сравнимо с работой двигателя с шестью цилиндрами.

Принцип работы

В настоящее время преобладает четырехтактный принцип работы двигателя внутреннего сгорания. Это объясняется тем, что поршень в цилиндре проходит четыре раза – вверх и вниз одинаково по два.

Как работает двигатель внутреннего сгорания:

  1. Первый такт – поршень при движении вниз втягивает топливную смесь. При этом клапан впуска находится в открытом виде.
  2. После достижения поршнем нижнего уровня, он двигается вверх, сжимая горючую смесь, которая, в свою очередь, принимает объем камеры сгорания. Этот этап, включенный в принцип работы двигателя внутреннего сгорания, является вторым по счету. Клапаны, при этом, находятся в закрытом виде, и чем плотнее, тем качественнее происходит сжатие.
  3. В третий такт включается система зажигания, так как здесь происходит воспламенение топливной смеси. В назначении работы двигателя он называется «рабочим», так как при этом начинается процесс привода в работу агрегата. Поршень от взрыва топлива начинает движение вниз. Как и во втором такте, клапаны находятся в закрытом состоянии.
  4. Завершающий такт – четвертый, выпускной, который дает понять, что такое завершение полного цикла. Поршень через выпускной клапан избавляется от отработавших газов цилиндра. Затем все циклически повторяется снова, понять, как работает двигатель внутреннего сгорания, можно представив цикличность работы часов.

Устройство ДВС

Устройство двигателя внутреннего сгорания логично рассматривать с поршня, так как он является основным элементом работы. Он представляет собой своеобразный «стакан» с пустой полостью внутри.

Поршень имеет прорези, в которых фиксируются кольца. Отвечают эти самые кольца за то, чтобы горючая смесь не выходила под поршень (компрессионное), а так же за то, чтобы масло не попадало в пространство над самим поршнем (маслосъемное).

Порядок работы

  • При попадании внутрь цилиндра топливной смеси, поршень проходит четыре вышеописанных такта, и возвратно-поступательное движение поршня приводит в движение вал.
  • Дальнейший порядок работы двигателя следующий: верхняя часть шатуна закреплена на пальце, который находится внутри юбки поршня. Кривошип коленвала фиксирует шатун. Поршень, при движении, вращает коленвал и последний, в свое время, передает крутящий момент системе трансмиссии, оттуда на систему шестерен и далее к ведущим колесам. В устройстве двигателей автомобилей с задним приводом посредником до колес выступает еще и карданный вал.

Конструкция ДВС

Газораспределительный механизм (ГРМ) в устройстве двигателя внутреннего сгорания отвечает за впрыск топлива, а так же за выпуск газов.

Механизм ГРМ состоит из верхнеклапанного и нижнеклапанного, может быть двух видов – ременной или цепной.

Шатун чаще всего изготавливается из стали путем штамповки или ковки. Есть виды шатунов, изготовленные из титана. Шатун передает усилия поршня коленвалу.

Коленвал из чугуна или из стали представляет собой набор коренных и шатунных шеек. Внутри этих шеек есть отверстия, отвечающие за подачу масла под давлением.

Принцип работы кривошипно-шатунного механизма в двигателях внутреннего сгорания заключается в преобразовании движений поршня в движения коленвала.

Головка блока цилиндров (ГБЦ), большинства двигателей внутреннего сгорания, как и блок цилиндров, чаще всего изготавливается из чугуна и реже из различных сплавов алюминия. В ГБЦ находятся камеры сгорания, каналы впуска – выпуска, отверстия свечей. Между блоком цилиндров и ГБЦ находится прокладка, обеспечивающая полную герметичность их соединения.

Читайте также  Двигатель от бензопилы на велосипед своими руками

В систему смазки, которую включает в себя двигатель внутреннего сгорания, входит поддон картера, маслозаборник, маслонасос, масляный фильтр и масляный радиатор. Все это соединено каналами и сложными магистралями. Система смазки отвечает не только за уменьшения трения между деталями мотора, но и за их охлаждение, а также за уменьшение коррозии и износа, увеличивает ресурс ДВС.

Устройство двигателя, в зависимости от его вида, типа, страны изготовителя, может быть чем-либо дополнено или, напротив, могут отсутствовать какие-то элементы ввиду устаревания отдельных моделей, но общее устройство двигателя остается неизменным так же, как и стандартный принцип работы двигателя внутреннего сгорания.

Дополнительные агрегаты

Само собой, двигатель внутреннего сгорания не может существовать как отдельный орган без дополнительных агрегатов, обеспечивающих его работу. Система запуска раскручивает мотор, приводит его в рабочее состояние. Существуют разные принципы работы запуска в зависимости от типа мотора: стартерный, пневматический и мускульный.

Трансмиссия позволяет развить мощность при узком диапазоне оборотов. Система питания обеспечивает ДВС двигатель малым электричеством. В нее входит аккумуляторная батарея и генератор, обеспечивающий постоянный поток электричества и заряд АКБ.

Выхлопная система обеспечивает выпуск газов. В любое устройство двигателя автомобиля входят: выпускной коллектор, который собирает газы в единую трубу, каталитический конвертер, который снижает токсичность газов путем восстановления оксида азота и использует образовавшийся кислород, чтобы дожечь вредные вещества.

Глушитель в этой системе служит для того, чтобы уменьшить выходящий из мотора шум. Двигатели внутреннего сгорания современных автомобилей должны соответствовать установленным законом нормам.

Тип топлива

Следует помнить и об октановом числе топлива, которое используют двигатели внутреннего сгорания разных типов.

Чем выше октановое число топлива – тем больше степень сжатия, что приводит к увеличению коэффициента полезного действия двигателя внутреннего сгорания.

Но существуют и такие двигатели, для которых увеличение октанового числа выше положенного заводом изготовителем, приведет к преждевременной поломке. Это может произойти путем прогорания поршней, разрушения колец, закопченности камер сгорания.

Заводом предусмотрено свое минимальное и максимальное октановое число, которое требует двигатель внутреннего сгорания.

Тюнинг

Любители увеличить мощность работы двигателей внутреннего сгорания зачастую устанавливают (если это не предусмотрено заводом изготовителем) различного рода турбины или компрессоры.

Компрессор на холостых оборотах выдает небольшую мощность, при этом держит стабильные обороты. Турбина же, наоборот, выжимает максимальную мощность при ее включении.

Установка тех или иных агрегатов требует консультации с мастерами, имеющими опыт работы в узком направлении, поскольку ремонт, замена агрегатов, или же дополнение двигателя внутреннего сгорания дополнительными опциями – это отклонение от назначения работы двигателя и уменьшают ресурс ДВС, а неправильные действия могут привести к необратимым последствиям, то есть работа двигателя внутреннего сгорания может быть навсегда окончена.

НАУЧНАЯ БИБЛИОТЕКА — РЕФЕРАТЫ — Двигатель внутреннего сгорания

Реферат на тему

Двигатель внутреннего сгорания

ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ

Области применения теплового расширения

ПОРШНЕВЫЕ ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ

Основы устройства поршневых ДВС

Принцип действия четырехтактного карбюраторного двигателя

Принцип действия четырехтактного дизеля

Принцип действия двухтактного двигателя

Рабочий цикл четырехтактных карбюраторных и дизельных двигателей

Рабочий цикл четырехтактного двигателя

Рабочие циклы двухтактных двигателей

ПОКАЗАТЕЛИ, ХАРАКТЕРИЗУЮЩИЕ РАБОТУ ДВИГАТЕЛЕЙ

Среднее индикаторное давление и индикаторная мощность

Эффективная мощность и средние эффективные давления

Индикаторный КПД и удельный индикаторный расход топлива

Эффективный КПД и удельный эффективный расход топлива

Тепловой баланс двигателя

Значительный рост всех отраслей народного хозяйства требует перемещения

большого количества грузов и пассажиров. Высокая маневренность,

проходимость и приспособленность для работы в различных условиях делает

автомобиль одним из основных средств перевозки грузов и пассажиров.

Важную роль играет автомобильный транспорт в освоении восточных и

нечерноземных районов нашей страны. Отсутствие развитой сети железных дорог

и ограничение возможностей использования рек для судоходства делают

автомобиль главным средством передвижения в этих районах.

Автомобильный транспорт в России обслуживает все отрасли народного

хозяйства и занимает одно из ведущих мест в единой транспортной системе

страны. На долю автомобильного транспорта приходится свыше 80% грузов,

перевозимых всеми видами транспорта вместе взятыми, и более 70%

Автомобильный транспорт создан в результате развития новой отрасли

народного хозяйства — автомобильной промышленности, которая на современном

этапе является одним из основных звеньев отечественного машиностроения .

Начало создания автомобиля было положено более двухсот лет назад

(название «автомобиль» происходит от греческого слова autos — «сам» и

латинского mobilis — «подвижный»), когда стали изготовлять «самодвижущиеся»

повозки. Впервые они появились в России. В 1752 г. русский механик-самоучка

крестьянин Л.Шамшуренков создал довольно совершенную для своего времени

«самобеглую коляску», приводимого в движение силой двух человек. Позднее

русский изобретатель И.П.Кулибин создал «самокатную тележку» с педальным

приводом. С появлением паровой машины создание самодвижущихся повозок

быстро продвинулось вперед. В 1869-1870 гг. Ж.Кюньо во Франции, а через

несколько лет и в Англии были построены паровые автомобили. Широкое

распространение автомобиля как транспортного средства начинается с

появлением быстроходного двигателя внутреннего сгорания. В 1885 г.

Г.Даймлер (Германия) построил мотоцикл с бензиновым двигателем, а в 1886 г.

К.Бенц — трехколесную повозку. Примерно в это же время в индустриально

развитых странах (Франция, Великобритания, США) создаются автомобили с

двигателями внутреннего сгорания.

В конце XIX века в ряде стран возникла автомобильная промышленность. В

царской России неоднократно делались попытки организовать собственное

машиностроение. В 1908 г. производство автомобилей было организовано на

Русско-Балтийском вагоностроительном заводе в Риге. В течение шести лет

здесь выпускались автомобили, собранные в основном из импортных частей.

Всего завод построил 451 легковой автомобиль и небольшое количество

грузовых автомобилей. В 1913 г. автомобильный парк в России составлял около

9000 автомобилей, из них большая часть — зарубежного производства.

После Великой Октябрьской социалистической революции практически заново

пришлось создавать отечественную автомобильную промышленность. Начало

развития российского автомобилестроения относится к 1924 году, когда в

Москве на заводе АМО были построены первые грузовые автомобили АМО-Ф-15.

В период 1931-1941 гг. создается крупносерийное и массовое производство

автомобилей. В 1931 г. на заводе АМО началось массовое производство

грузовых автомобилей. В 1932 г. вошел в строй завод ГАЗ.

В 1940 г. начал производство малолитражных автомобилей Московский завод

малолитражных автомобилей. Несколько позже был создан Уральский

автомобильный завод. За годы послевоенных пятилеток вступили в строй

Кутаисский, Кременчугский, Ульяновский, Минский автомобильные заводы.

Начиная с конца 60-х гг., развитие автомобилестроения характеризуется особо

быстрыми темпами. В 1971 г. вступил в строй Волжский автомобильный завод

им. 50-летия СССР.

За последние годы заводами автомобильной промышленности освоены многие

образцы модернизированной и новой автомобильной техники, в том числе для

сельского хозяйства, строительства, торговли, нефтегазовой и лесной

ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ

В настоящее время существует большое количество устройств, использующих

тепловое расширение газов. К таким устройствам относится карбюраторный

двигатель, дизели, турбореактивные двигатели и т.д.

Тепловые двигатели могут быть разделены на две основные группы. 1.

Двигатели с внешним сгоранием — паровые машины, паровые турбины, двигатели

Стирлинга и т.д. 2. Двигатели внутреннего сгорания. В качестве

энергетических установок автомобилей наибольшее распространение получили

двигатели внутреннего сгорания, в которых процесс сгорания топлива с

выделением теплоты и превращением ее в механическую работу происходит

непосредственно в цилиндрах. На большинстве современных автомобилей

установлены двигатели внутреннего сгорания.

Наиболее экономичными являются поршневые и комбинированные двигатели

внутреннего сгорания. Они имеют достаточно большой срок службы,

сравнительно небольшие габаритные размеры и массу. Основным недостатком

этих двигателей следует считать возвратно-поступательное движение поршня,

связанное с наличием криво шатунного механизма, усложняющего конструкцию и

ограничивающего возможность повышения частоты вращения, особенно при

значительных размерах двигателя.

А теперь немного о первых ДВС. Первый двигатель внутреннего сгорания

(ДВС) был создан в 1860 г. французским инженером Этвеном Ленуаром, но эта

машина была еще весьма несовершенной. В 1862 г. французский изобретатель Бо

де Роша предложил использовать в двигателе внутреннего сгорания

четырехтактный цикл: 1)всасывание; 2) сжатие; 3) горение и расширение; 4)

выхлоп. Эта идея была использована немецким изобретателем Н.Отто,

построившим в 1878 г. первый четырехтактный двигатель внутреннего сгорания.

двигателя достигал 22%, что превосходило значения, полученные при

использовании двигателей всех предшествующих типов.

Быстрое распространение ДВС в промышленности, на транспорте, в сельском

хозяйстве и стационарной энергетике была обусловлена рядом их положительных

Осуществление рабочего цикла ДВС в одном цилиндре с малыми потерями

значительным перепадом температур между источником теплоты и холодильником

обеспечивает высокую экономичность этих двигателей. Высокая экономичность —

одно из положительных качеств ДВС. Среди ДВС дизель в настоящее время

является таким двигателем, который преобразует химическую энергию топлива в

механическую работу с

наиболее высоким КПД в широком диапазоне изменения мощности. Это качество

дизелей особенно важно, если учесть, что запасы нефтяных топлив ограничены.

К положительным особенностям ДВС стоит отнести также то, что они могут

быть соединены практически с любым потребителем энергии. Это объясняется

широкими возможностями получения соответствующих характеристик изменения

мощности и крутящего момента этих двигателей.

Рассматриваемые двигатели успешно используются на автомобилях тракторах

, сельскохозяйственных машинах, тепловозах, судах ,электростанциях и т.д.,

т.е. ДВС отличаются хорошей приспособляемостью к потребителю.

Сравнительно невысокая начальная стоимость, компактность и малая масса

ДВС позволили широко использовать их на силовых установках, находящих

широкое применение и имеющих небольшие размеров моторного отделения.

Установки с ДВС обладают большой автономностью. Даже самолеты с ДВС

могут летать десятки часов без пополнения горючего. Важным положительным

качеством ДВС является возможность их быстрого пуска в обычных условиях.

Двигатели, работающие при низких температурах, снабжаются специальными

устройствами для облегчения и ускорения пуска. После пуска двигатели

сравнительно быстро могут принимать полную нагрузку. ДВС обладают

значительным тормозным моментом, что очень важно при использовании их на

Положительным качеством дизелей является способность одного двигателя

работать на многих топливах. Так известны конструкции автомобильных

многотопливных двигателей, а также судовых двигателей большой мощности,

которые работают на различных топливах – от дизельного до котельного

мазута. Но наряду с положительными качествами ДВС обладают рядом

недостатков. Среди них ограниченное по сравнению, например с паровыми и

газовыми турбинами агрегатная мощность. Высокий уровень шума, относительно

большая частота вращения коленчатого вала при пуске и невозможность

непосредственного соединения его с ведущими колесами потребителя,

Токсичность выхлопных газов, возвратно-поступательное движение поршня,

ограничивающие частоту вращения и являющиеся причиной появлений не

уравновешенных сил инерции и моментов от них. Но невозможно было бы

создание двигателей внутреннего сгорания, их развития и применения, если бы

не эффект теплового расширения. Ведь в процессе теплового расширения

нагретые до высокой температуры газы совершают полезную работу. Вследствие

быстрого сгорания смеси в цилиндре двигателя внутреннего сгорания, резко

повышается давление, под воздействием которого происходит перемещение

поршня в цилиндре. А это-то и есть та самая нужная технологическая функция,

т.е. силовое воздействие, создание больших давлений, которую выполняет

тепловое расширение, и ради которой это явление применяют в различных

технологиях и в частности в ДВС. Именно этому явлению я хочу уделить

внимание в следующей главе.

Тепловое расширение — изменение размеров тела в процессе его

изобарического нагревания (при постоянном давлении). Количественно тепловое

расширение характеризуется температурным коэффициентом объемного расширения

B=(1/V)*(dV/dT)p, где V — объем, T — температура, p — давление. Для

большинства тел B>0 (исключением является, например, вода, у которой в