Электрооборудование мостового крана

Электрооборудование мостового крана

Кроме перечисленного электрооборудования и аппаратуры на мостовых кранах, может возникнуть потребность в следующих оборудовании и аппаратуре.

1. Трансформатор для переносной лампы напряжением на 12 В, применяемой при ремонте, подключается к верхним зажимам рубильника, чтобы можно было воспользоваться освещением при отключении оборудования. На кранах, питающихся от сети постоянного тока, в кабине крановщика должен находиться аккумулятор напряжением 12 В и емкостью не менее 50 А-ч с тем, чтобы его работа продолжалась не .менее одной смены (8 ч). Лампа мощностью 50 Вт при напряжении 12 В потребляет зачас тока около 4 А, а для работы в течение смены потребуется 4X8 = 32 А-ч, и аккумулятор указанной емкости вполне достаточен. Аккумулятор желательно иметь щелочной, так как от него нет вредных для аппаратуры испарений.

По правилам техники безопасности корпус трансформатора, а также один из концов вторичной обмотки заземляют, чтобы при повреждении изоляции обмоток корпуса трансформатор не находился под напряжением сети, а следовательно, не представлял опасности в случае прикосновения к нему.

Рекламные предложения на основе ваших интересов:

2. Переносные лампы, применяемые на кранах, должны иметь защитную сетку и пластмассовый патрон; провод нужен шланговый марки ШРПС со штепсельной вилкой для подключения к розетке.

Очень удобны для питания переносных ламп пониженным напряжением однофазные аппараты местного освещения типа АМО-3. Аппарат состоит из следующих узлов: трансформатора типа ТПБ-50, предохранителя типа ПК и включателя типа ВТ-2, заключенных в штампованный стальной кожух. Номинальная мощность трансформатора 50 Вт, масса аппарата 3,3 кг. Аппараты рассчитаны на первичное напряжение 500, 380, 320 или 127 В и вторичное напряжение 36, 12 или 6 В.

3. Для заземления обмотки низшего напряжения трансформатора имеются винт и скоба. В качестве звукового сигнала на кране наиболее удобен электрический звонок громкого боя или ревун. На кранах с небольшой нагрузкой иногда применяют ручной колокол. Рекомендуется применять кнопку для звонка, употребляемую для пуска электродвигателей магнитными пускателями. Лучше всего использовать кнопки, смонтированные в пластмассовом корпусе.

4. Провода, двигатели и аппаратуру защищают от действия токов короткого замыкания плавкими предохранителями, которые отключают поврежденный участок цепи при коротком замыкании. На кранах для защиты трансформаторов безопасности и цепей управления применяют трубчатые предохранители типа ПР-2, имеющие два габарита: первый на напряжение до 220 В, второй — на напряжение до 500 В. Эти предохранители рассчитаны на номинальные токи от 6 до 100 А.

Патрон предохранителя представляет собой фибровую трубку, с двух сторон которой навернуты латунные втулки с прорезью для плавкой вставки. На втулки навинчивают латунные колпачки, являющиеся контактными частями патрона. Плавкие вставки делают из цинка с одним или несколькими узкими местами (перешейками). К достоинствам предохранителей относятся простота их устройства и низкая стоимость. Однако смена предохранителей всегда занимает некоторое время и обусловливает простой оборудования.

5. Более совершенный вид защиты крановых установок — воздушные автоматические выключатели или автоматы. Их устанавливают для защиты главных троллеев внизу на кабеле, который питает троллеи. Как уже было указано ранее, электродвигатели на кране защищают с помощью максимальных реле, предусмотренных на крановой защитной панели.

Автоматы рассчитаны на номинальный ток от 15 до 1000 А как постоянный, так и переменный.

На магнитном кране в кабине может быть установлен вольтметр постоянного тока для контроля за режимом работы генератора, питающего магнит. Кроме того, необходимы реостат возбуждения генератора и рубильник или магнитный пускатель. Генератор после запуска должен давать напряжение 220 В; если этого не наблюдается, реостатом возбуждения производят подгонку напряжения, после чего включают магнит.

Разрядное сопротивление устанавливают на мосту крана вместе с панелью управления ПМС.

Для приведения в действие рабочих механизмов мостовых кра- нов применяют трехфазные асинхронные двигатели переменного тока или двигатели постоянного тока последовательного или парал« лельного возбуждения. Рассмотрим крановые электродвигатели.

Сложные и специфические условия эксплуатации мостовых кра« нов (цикличность и кратковременность их работы, изменение нагрузки в течение цикла, суток и года и т. п.) предъявляют особые требования к применяемым электродвигателям.

В настоящее время промышленностью выпускаются крановые электродвигатели постоянного тока серии Д напряжением 220 и 440 В, асинхронные электродвигатели с короткозамкнутым ротором серии MTKF , МТКН и с фазным ротором MTF и МТН напряжением 220, 380, 500 В.

Наиболее полно особенностям работы крановых механизмов удовлетворяют крановые электродвигатели серии Д, которые прп последовательном возбуждении рекомендуется применять для механизмов подъема и передвижения кранов с большим числом включений в час, широким диапазоном регулирования скорости выше номинальной. Однако для питания этих двигателей необходимо использование источников постоянного тока либо выпрямительных (преобразовательных) установок. По сравнению с асинхронным двигателем масса, размеры и стоимость кранового двигателя постоянного тока при одинаковых номинальных моментах больше, а КПД меньше. Поэтому электродвигатели постоянного тока применяют только на механизмах кранов, работающих в тяжелом или весьма тяжелом режиме, например, механизмах подъема магнитных кранов металлургического производства и т. п.

Наибольшее распространение в приводах механизмов мостовых кранов нашли трехфазные электродвигатели переменного тока, поскольку большинство кранов получают питание непосредственно от сети трехфазного тока.

По сравнению с электродвигателями общепромышленного назначения крановые электродвигатели обладают значительной перегрузочной способностью (способностью выдерживать кратковременную перегрузку больше номинальной), имеют повышенный пусковой момент. Отличительным свойством крановых электродвигателей является меньший момент инерции якоря или ротора, что достигается уменьшением диаметра при одновременном увеличении их длины. Это позволяет снизить время пуска или торможения, реверсирования механизма и уменьшить нагрев электродвигателя.
Крановые электродвигатели обладают высокой надежностью при широком диапазоне изменения частоты вращения, частых пусках и торможениях, обусловленных повторно-кратковременным режимом их работы. Кроме того, они приспособлены для работы в условиях повышенной влажности, запыленности, вибрации и уларов. Например, частота вращения якоря электродвигателей постоянного тока может превышать номинальную в 3,5—4,9 раза, а ротора трехфазных электродвигателей переменного тока в 2,5 раза.

Крановые электродвигатели изготовляют в основном в закрытом исполнении с изоляцией обмоток, рассчитанной на работу в интервале температур от —60 °С до +180 °С и установленным па валу якоря или ротора вентилятором. Для улучшения наружного обдува станина трехфазных асинхронных электродвигателей статора выполнена ребристой.

Трехфазные асинхронные электродвигатели серии МТН отличаются от электродвигателей серии MTF допустимой температурой нагрева, которая составляет для электродвигателей серии MTF 155 °С, а для серии МТН 180 °С.

На предприятиях строительной промышленности и на крупных ремонтных заводах широкое применение находят мостовые краны. Обычно мостовой кран оборудован тремя или четырьмя двигателями кранового типа, один из которых установлен на раме моста и служит для его передвижения по подкрановым балкам, а два других — на грузоподъемной тележке и служат для передвижения тележки вдоль моста и для подъема—опускания груза. Питание электродвигателя моста осуществляется от главных троллеев, прокладываемых вдоль подкрановых балок. Электродвигатель передвижения тележки питается от вспомогательных троллеев, проложенных вдоль моста.

Рис. 91. Принципиальная электрическая схема цепей управления башенного крана КБ-100-1
/ — подъем груза; // — поворот крана; ///— передвижение крана; iv — подъем стрелы

В кабине крановщика монтируется распределительное устройство крановой установки, провода от которого подаются к контроллерам, служащим для управления двигателями. Контроллеры и пусковые сопротивления также монтируются в кабине крановщика. На подкрановых путях устанавливаются конечные выключатели.

Промышленность выпускает мостовые краны, оборудованные для работы на переменном и постоянном токе.

Ниже рассматривается электросхема крана, оборудованного асинхронными двигателями трехфазного тока (рис. 92). Питание к крану подводится от сети через главные троллеи, плавкие предохранители ПРГ и главный рубильник Р. От рубильника напряжение подается на линейный контактор Л трехмоторной крановой защитной панели. К главным контактам линейного контактора присоединяются катушки трех двухкатушечных максимальных реле, катушка четвертого реле РМО включена в общий провод всех трех двигателей; два остальных провода защищены у каждого из двигателей (РМ1, РМ2, РМЗ).

Линейный контактор включается нажатием на кнопку КР, установленную на защитной панели. Контактор Л может быть включен только в том случае, если все контроллеры предварительно поставлены в нулевое положение и цепь 1—2 замкнута, а также если при этом замкнуты контакты аварийного выключателя АВ и контакты люка КЛ.

Если во время движения крана люк для выхода на мост открыть, то линейный контактор автоматически отключится и снимет напряжение с троллеев, проложенных вдоль моста. Такое отключение линейного контактора вызывается требованиями техники безопасности. Отключение линейного контактора также происходит при срабатывании максимальной защиты одного из двигателей (размыканием контактов максимальных реле РМО, РМЗ, РМ2, РМ1) или одного из конечных выключателей КВ.

Рис. 92. Схема управления асинхронными двигателями мостового крана

Для двигателей подъемного механизма и передвижения тележки (с фазным ротором) требуется прокладка 11 троллеев: по три троллея для роторных цепей, по два — для статоряых цепей и одного общего также для цепей статора. Два троллея требуются для конечного выключателя подъема, устанавливаемого непосредственно у подъемного механизма на тележке крана. Таким образом, всего вдоль моста прокладывается 13 троллеев, а вдоль путей кранового моста для питания всего крана — три троллея.

Электрические схемы электроприводов мостовых кранов, управляемых с пола

Схемы кранов и особенности защиты

В промышленности при транспортно-складских работах невысокой интенсивности, в машинных залах и лабораторных помещениях используется большое число мостовых кранов, работающих либо эпизодически, либо с числом грузоподъемных циклов 6 — 10 в час. Для таких кранов использовать штатных машинистов экономически нецелесообразно. Поэтому все большее число мостовых кранов имеют управление с пола.

Особенностью мостовых кранов, управляемых с пола, является возможность доступа на кран для ремонта и контроля только в специально отведенных местах, снабженных соответствующими площадками осмотра механизмов и электрооборудования. Поэтому вся система защиты электрооборудования крана должна быть построена таким образом, чтобы кран в аварийных условиях мог быть доведен до ремонтной зоны при управлении с пола и при отсутствии в схеме крана коротких замыканий и замыканий на землю.

В связи с этим на кранах, управляемых с пола, автоматические выключатели не устанавливаются. Защита главных цепей осуществляется автоматическим выключателем питания главных троллеев, а защита цепей управления — плавкими предохранителями на токи 15 А, 380 В при сечении проводов цепей управления 2,5 мм2. Защита от перегрузок электроприводов механизмов осуществляется тепловыми реле в главных цепях двигателей.

Для возможности движения крана после срабатывания тепловой защиты контакты реле шунтируются кнопкой на пульте управления. На кране устанавливаются сигнальные лампы наличия напряжения на входе, напряжения после линейного контактора защиты и сигнальная лампа срабатывания тепловой защиты.

Электрические схемы механизмов передвижения мостовых кранов

На рис. 1 представлена схема электропривода передвижения при управлении короткозамкнутым односкоростным двигателем.

Рис. 1. Схема электропривода (с односкоростным короткозамкнутым двигателем) механизма передвижения крана при управлении с пола: M1, М2— электродвигатели, YB1, YB2 — электромагниты тормозов или электрогидравлическне толкатели, КМ1, КМ2 — контакторы направления движения, КМ4, КМ5 — контакторы резисторов в цепи статоров, КМЗ — контактор тормозов, КТ — реле контроля времени пуска, FR1, FR2— тепловые реле, SQ1, SQ2 — конечные выключатели, SB1, SB2 — кнопки направления движения (двухходовые), SB11, SB21 — кнопки пуска, SB3 — кнопка прекращения свободного выбега, SB4 — кнопка шунтирования тепловой защиты, ХА1—ХА9 — контакты токопереходных троллеев

Эта схема предназначается для приводов тележек кранов грузоподъемностью 3—20 т и приводов мостов кранов грузоподъемностью 2—5 т. Обмотки статора короткозамкнутого двигателя получают питание от сети через две ступени резисторов. Механические характеристики электропривода приведены на рис. 2, а.

Управление электроприводом — от подвесных кнопочных постов. В управлении участвуют две основные двухходовые кнопки SB1 и SB2 дающие команду на движение в двух направлениях. Переход на положение без регулирующих резисторов осуществляется при подаче команд кнопками SB11, SB21.

При включении двигателя через контакты контакторов КМ1, КМ2 подается питание на привод тормоза YB через контакты КМЗ. После отключения электродвигателя привод тормоза продолжает получать питание и механизм имеет свободный выбег. Для отключения тормоза используется кнопка SB3, общая для механизма тележки и моста. При срабатывании конечных выключателей SQ1 и SQ2 происходит отключение линейного контактора защиты и накладывается механический тормоз.

Читайте также  Кран из дерева своими руками

Для обеспечения электрического торможения противовключением после свободного выбега используется реле времени КТ с выдержкой времени 2—3 с, задерживающее привод на положении с минимальным пусковым (тормозным) моментом.

На рис. 3 представлена схема электропривода передвижения мостового крана (тележки) с использованием двухскоростных короткозамкнутых электродвигателей. Электродвигатель имеет две отдельные обмотки с соотношением числа полюсов

Кнопкой SB1 или SB2 включаются контакторы направления KM1, КМ2, а также контактор малой скорости КМ4. После подачи питания к тихоходной обмотке двигателя через контактор КМЗ получает питание привод тормоза YB1, YB2. Для перехода на большую скорость двухходовыми кнопками SB замыкаются контакты SB11, SB21 (второе положение) и включается контактор КМ6.

Обмотка большой скорости подключается к сети через резистор одновременно с тихоходной обмоткой. Затем тихоходная обмотка отключается. По истечении выдержки времени реле КТ (2—5 с) включается контактор КМ5 и двигатель выходит на свою естественную характеристику быстроходного режима (рис. 2,б).

Рис. 2. Механические характеристики к схемам рис. 1, 3

При отключении двигателя от сети привод тормоза продолжает получать питание и имеет место свободный выбег. Электрическое торможение может быть осуществлено при переходе с большой скорости на малую. Для отключения тормоза достаточно нажать кнопку SB3.

При срабатывании конечной защиты за счет размыкания линейного контактора защитной панели происходит отключение электродвигателя и наложение механического тормоза. Механизм тормозится с максимальной интенсивностью.

Благодаря применению резисторов в цепи быстроходной обмотки осуществляется сравнительно плавный пуск под контролем реле времени КТ, однако тормозной момент тихоходной обмотки не ограничивается, и в этом случае плавность торможения может быть достигнута несколькими импульсными включениями кнопки SB1 или SB2.

Рис. 3. Схема электропривода (с двухскоростным короткозамкнутым двигателем) механизма передвижения крана при управлении с пола: M1. М2 — электродвигатели, YB1, YВ2 — приводы тормозов, KM1, KM 12 — контакторы направления движения, КМЗ — контактор тормозов, КМ4 — контактор малой скорости, КМ5 — контактор большой скорости, КМ6 — контактор резисторов в цепи статора, FRI, FR2, FR3 — тепловые реле, КТ — реле времени контроля пуска, SQ1, SQ2 — конечные выключатели, SB1, SB2 — кнопки направления движения (двухходовые): SB11, SB21 — кнопки большой скорости (второе положение кнопок SB1, SB2), SВЗ — кнопка прекращения свободного выбега, SB4 — кнопка шунтировании тепловой защиты, ХА1-

ХЛ11 — контакты токопереходных троллеев.

На рис. 4 представлена схема механизма передвижения мостового крана с использованием двухскоростного двигателя без свободного выбега. Схема отличается от рассмотренной последовательным включением тихоходной и быстроходной обмоток и некоторым ограничением тормозного момента при последовательном включении обмоток. Схема рекомендуется для мостовых кранов, эксплуатирующихся на открытом воздухе.

Электрические схемы механизмов подъема кранов

На рис. 5 представлена схема управления электроприводом подъема с использованием двухскоростного короткозамкнутого электродвигателя с двумя независимыми обмотками с соотношением чисел полюсов 4/24 и 6/16. Схема построена по принципу двойного разрыва двумя независимыми аппаратами главной цепи обмоток электродвигателя и цепей привода тормоза, что обеспечивает необходимую надежность привода подъема.

Тихоходная обмотка электродвигателя получает питание через контакты линейного контактора КМ1, контакты контакторов направления КМ2, КМЗ и размыкающие контакты контактора КМ4 после нажатия соответствующей кнопки SB1, SB2 (первое положение).

Рис. 4. Схема электропривода (с двухскоростным короткозамкнутым двигателем) механизма передвижения крана: М — электродвигатель, YB— привод тормоза, KM1, КМ2 — контакторы направления движения, КМЗ— контактор малой скорости, КМ4—контактор большой скорости, КМ5 — контактор резистора большой скорости, КТ — реле контроля времени пуска, FR4 — тепловые реле, SQ1, SQ2—конечные выключатели, SB1, SB2 — кнопки направления движения, SB11, SB21 — кнопки большой скорости, SB3 — кнопка шунтирования тепловых реле, ХА1-ХА10— контакты токопереходных троллеев

При нажатии кнопки SB11(SB21).получает питание катушка контактора КМ4, происходит переключение с малой скорости на большую при минимальном перерыве питания. При этом не может быть положения, когда быстроходная и тихоходная обмотки отключены. Переход с тихоходной обмотки на быстроходную происходит под контролем реле времени КТ. При срабатывании конечной защиты происходит двойное отключение обмоток двигателя и тормоза.

На рис. 6 представлена схема электропривода механизма подъема с двумя короткозамкнутыми электродвигателями, соединенными между собой и с редуктором через планетарную передачу с передаточным числом 6—8. Электродвигатель малой скорости М2 включается на все время работы механизма. Электродвигатель большой скорости включается на время работы большой скорости. Электродвигатель малой скорости имеет встроенный тормоз.

Рис. 5. Схема электропривода (с двухскоростным короткозамкнутым двигателем) механизма подъема при управлении с пола: М — электродвигатель, YB — обмотка тормоза, KM1 — лилейный контактор, КМ2— КМЗ—контакторы направления движения, КМ4 — контактор переключения скоростей, FR1—FR3 — тепловые реле, КТ — реле контроля разгона, SQ1, SQ2— конечные выключатели, SB1, SB2 — кнопки направления (двухходовые). SB3 — кнопка шунтирования тепловых реле, SB11, SB21 — кнопки большой скорости (второе положение кнопок SB1, SB2), ХА1 — ХА10 — контакты токопереходных троллеев.

Рис. 6. Схема микропривода механизма подъема при управлении с пола: M1 — электродвигатель большой скорости, М2 — электродвигатель малой скорости, YB1 — обмотка тормоза большой скорости, YB2 — обмотка тормоза двигателя малой скорости, KM1 — линейный контактор, КМ2—КМЗ — контакторы направления большой скорости, КМ4, КМ5 — контакторы направления малой скорости, КМ6—контактор тормоза большой скорости, КТ — реле контроля времени пуска, SQ1, SQ2 — конечные выключатели, FR1—FR4 — тепловые реле, SB1, SB2-двухходовые кнопки направления, SB11, SB21 — кнопки большой скорости (второе положение кнопок SB1, SB2), XA1— ХА10 — контакты токопереходных троллеев

Электродвигатель большой скорости имеет отдельный тормоз с приводом от электрогидравлического толкателя. При нажатии кнопки направления SB1(SB2) получает питание катушка контактора КМ4 (КМ5) и включается электродвигатель малой скорости. Одновременно включается общий линейный контактор КМ1.

При нажатии кнопки SB1(SB2) до упора замыкаются контакты SB11(SB21), получают питание катушки контактора КМ2(КМЗ) и КМ6, но после того как истечет время пуска на малой скорости под контролем реле КТ, включается двигатель большой скорости.

При замедлении подъема или спуска после отключения двигателя большой скорости затормаживание до малой скорости осуществляется тормозом YB1. После срабатывания конечных выключателей SQ1 и SQ2 происходит отключение электропривода с двойным разрывом цепи двигателя и приводов тормозов.

Все описанные схемы в соответствии обеспечивают включение механизмов крана при управлении с пола только при постоянном нажатии на кнопку. При отключении любого вида защиты механизм останавливается вне зависимости от состояния кнопочного аппарата управления.

Рассмотренные схемы рис. 2-5 могут быть скомпонованы из стандартных магнитных пускателей типа ПМА, ПМЛ и реле времени. Исключение составляет схема рис. 2, в которой в качестве контактора переключения скоростей используется контактор постоянного тока МК1-22, 40 А, 380 В, катушка 220 В. По указанным схемам разрабатываются панели управления для двигателей передвижения мощностью от 0,8 до 2х8,5 кВт и панели управления для двигателей подъема мощностью от 10 до 22 кВт.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Все про устройство мостового крана: от грузовой тележки до электрооборудования

В 80-е годы в СССР ежегодно производилось 6-7 тысяч подъемных кранов мостового типа. В 2000-е годы их выпуск в России сократился до 1000-1500 единиц техники.

Несложное устройство мостового крана позволяет широко использовать грузоподъемные машины (ГПМ) этого типа на разномасштабных предприятиях — от маленьких автомастерских до больших металлургических комбинатов или ТЭЦ.

Классификация

Используются мостовые краны для того, чтобы поднимать и перемещать тяжелые грузы больших размеров во всех сферах промышленной деятельности человека.

Технические характеристики мостовых кранов разрешают применять эту категорию ГПМ как для внутренней погрузки-разгрузки, так и для наружных работ в любых климатических условиях.

Недостаток мостовых ГПМ — в их стационарности, а плюс — в том, что они могут использовать строительную высоту здания.

Мостовые ГПМ делятся на 2 большие группы: общего назначения и специальные.

Мостовые ОПИ (общепромышленного исполнения) оборудованы грузовым крюком.

Специальные — оснащаются захватами, имеющими узкоспециализированное назначение: грейфер, магнит, захваты для контейнеров. Подъемники спец. назначения производят с поворотной тележкой или стрелой.

В отдельную группу выделяют металлургические ГПМ, предназначенные только для данной отрасли промышленности. Оснащаются такие ГПМ спец. захватами: литейными, ковочными, для раздевания слитков и др.

Два способа опирания на крановый путь

У двутавровой пролетной балки есть верхний и нижний горизонтальные пояса. На верхний размещают опорные, а под нижний крепятся подвесные:

  • Опорные устанавливаются колесами на рельсы сверху. Грузоподъемность опорных ГПМ — максимальна (до 500т), но постройка подкрановой эстакады или опор требует финансовых затрат.
  • Подвесные подцепляются к нижним полкам кранового пути. Этот вид опирания прост в монтаже и имеет невысокую стоимость. Небольшая грузоподъемность (до 8т) окупается малой высотой конструкции, из-за чего размер рабочей зоны больше, чем у опорных кранов.

Подвесные краны можно установить на часть цеха. Есть возможность стыковать краны (стыковой замок) и перемещать тележки с одного крана на другой.

Конструкции устройства бывают разными. Они могут двигаться поступательно или совершать обороты вокруг вертикальной оси (хордовые, радиальные и поворотные) ГПМ.

Конструкция мостового крана

По количеству главных балок конструкция ГПМ бывает:

    однобалочная. Используется на небольших производствах, может быть подвесным или опорным. Г/п 8 т.

Использование — в больших производственных цехах, в автомобильной, металлургической промышленности. Длина пролета — до 60м. Грузовая тележка может иметь вспомогательный грузоподъемный механизм помимо основного.

Тип привода мостового ГПМ

Привод механизмов у мостовых ГПМ может быть ручным или электрическим.

    Ручнойпривод. У этого мостового крана механизмом передвижения служат червячные тали.

Используют ручные ГПМ для подъема относительно небольших грузов, при производстве вспомогательных или ремонтных работ.

  • Электропривод. Электрические тельферы служат в качестве устройств подъема и перемещения грузов. Мост ГПМ движется тоже с помощью электродвигателей, они передают вращение ходовым колесам либо через редукторы, либо через редуктор и трансмиссию.
  • Из чего состоит мостовой кран?

    Общее устройство мостового крана — это одно- или двухбалочный мост и грузовая тележка, которая по нему перемещается.

    На мосту и на тележке размещается электрооборудование и основные узлы и механизмы.

    Тормозная система

    Стандартная система торможения для мостовых ГПМ — колодочная или диско-колодочная.

    Функционально тормозные устройства кранов бывают стопорными — для остановки устройства — и спускными — замедляющими спуск.

    Тормоза могут быть открытого или закрытого типов. Подъемные механизмы кранов оснащаются закрытыми тормозами — в нормальном положении механизмы заторможены, тормоз снимается только при запуске двигателя.

    Тормоза закрытого типа используют в ГПМ потому, что они более долговечны, чем открытые и их поломку можно легко заметить.

    Открытые тормоза в некоторых случаях монтируют дополнительно к закрытым (как вспомогательные) — для увеличения скорости и точности размещения грузов.

    Подъемные механизмы

    Механизм подъема и спуска груза тоже размещен на крановой тележке.

    Состоит из приводного электродвигателя, трансмиссионных валов, горизонтального редуктора и грузовых тросов с барабаном для намотки.

    Для работ с грузами >80 т применяется доп. редуктор мостового крана или понижающая зубчатая передача. Чтобы повысить тяговое усилие используют полиспаст (чаще всего сдвоенный кратный).

    Редуктор мостового крана, его назначение и устройство

    Функционально цилиндрические крановые редукторы можно разделить на:

    • редукторы подъемных механизмов;
    • редукторы движения тележек;
    • редукторы движения мостов.

    Редуктор может иметь 2 типа исполнения: развернутое и планетарное.

    Редукторы развернутого типа, оснащенные цилиндрическими колесами более популярны. Ремонт и обслуживание механизмов этой конструкции проще и дешевле.

    Подкрановые пути мостовых кранов

    При устройстве кранового пути в качестве крановых и тележечных рельсов используют ж/д рельсы Р18, Р24, Р38 (узкоколейные) и Р43, Р50 и Р65 (для широкой колеи).

    Также используют спец.крановые рельсы КР50, КР70, КР80, КРЮО, КР120, или же стальные направляющие квадратного сечения с закругленными краями (для механизмов г/п ≥ 20т).

    В качестве крановых путей для подвесного типа ГПМ применяют двутавровые балки.

    Крепления рельсов к балкам должны исключать смещение рельсов и должны позволять быструю замену изношенных рельсов. Их концы соединяют двусторонними накладками и болтами или сваривают.

    Электрообрудование

    К электрике мостовых ГПМ предъявляются особые, повышенные требования, что обусловлено напряженными режимами работы.

    За 1 час может быть произведено сотни включений, выключений и перегрузок, связанных с разгоном, торможением устройства в целом или тележки.

    Движение моста и крановой тележки, подъем и перемещение груза осуществляется основным электрооборудованием:

    • электродвигатели. Устанавливаются 3 (4) двигателя, 2 из них размещены на тележке для подъема/спуска груза и движения тележки по балке моста, и 1 (2) двигателя перемещает балку крана по рельсам. В мостовых кранах для ОПИ используют прочные асинхронные электродвигатели, предназначенные для частых перегрузок и пусков серий МТ или МТК (для ненапряженной работы), трехфазного тока;
    • контроллеры, реле управления, магнитные пускатели и другая аппаратура для того, чтобы управлять электродвигателями;
    • электромагниты, толкатели и прочие устройства, задействованные в работе стопорных тормозов;
    • ограничители грузоподъемности и прочие средства механической защиты.

    Прожекторы, приборы рабочего и ремонтного освещения, обогрева, звуковая сигнализации, измерительная аппаратура — все это является вспомогательным электрооборудованием.

    Подводится электропитание 2-мя способами: троллейными линиям или гирляндными кабельными системами:

    1. Троллейная линия — применяется в ГПМ большой грузоподъемности.
    1. Кабельная система. Гибкий эл.кабель, который подвешивается на специальные кабеленесущие каретки. Гирляндная система дешевле, ее монтаж и эксплуатация — легче, но она менее надежна.

    Для перемещения балки моста применяется троллейная линия, а для крановой тележки — кабельная система.

    Устройство крановой тележки мостового крана

    Грузовая тележка производит подъем, спуск и перемещение груза вдоль моста.

    На жесткой стальной раме с ведущими и ведомыми колесами установлены многочисленные крановые узлы.

    Это приводы, электродвигатели подъемных механизмов (основного и вспомогательного), токосъемник, блокираторы высоты подъема.

    Аварийную остановку тележки при поломке тормозной системы обеспечивают буфера.

    Консольную тележку используют для однобалочных устройств. В двухбалочных применяют тележки, которые могут двигаться по обоим поясам балок (нижнему и верхнему).

    Схема управления мостовым краном

    Управляется ГПМ из подвесной кабины или с проводного (беспроводного) пульта, место расположения оператора — на полу цеха (земле) или вне рабочей площадки.

    Монтаж мостового крана

    Мостовой ГПМ требует доработки рабочей площадки – нужно проложить крановой путь.

    Рельсовый путь может быть смонтирован на специальной крановой эстакаде, или для его постройки используется пол, колонны и опоры здания.

    Есть 3 варианта монтажа:

    • Поэлементный(пошаговый). Сборка крановых узлов происходит наверху на подкрановых путях.
    • Крупноблочный так называемая, укрупненная сборка. На высоту для монтажа поднимаются крупные фрагменты (механизмы, электрооборудование, узлы) крана, заранее собранные внизу.
    • Полноблочный полная сборка моста на полу. Конструкция поднимается целиком и монтируется на подкрановых путях. Для данного метода необходимо использование мощной техники.

    Фото разных моделей

    Вот так выглядят эти механизмы за работой:





    Подробное видео о мостовом кране

    Рассмотреть устройство в деталях можно на обучающем видео:

    Общая часть

    Характеристика мостовых кранов

    Мостовой кран — кран, у которого несущие элементы конструкции опираются непосредственно на крановый путь.

    Мостовой кран в ЦРГ установлен внутри производственного корпуса и предназначен для подъема, опускания и перемещения различных грузов при производстве монтажных, ремонтных и погрузочно-разгрузочных работ. Мостовыми краны называются по отличительной конструкции продольных (главных) и поперечных (концевых) балок, выполненных в виде моста; сваренные между собой продольные и поперечные балки передвигаются по рельсовому пути, уложенному на подкрановые балки, закрепленные на консолях колонн здания (цеха, корпуса) или эстакады открытой площадки.

    Металлические конструкции мостов выполняют двух- или однобалочными. Наибольшее применение нашли двух балочные мосты. Опорный мостовой кран передвигается по рельсам, уложенным на металлических или железобетонных подкрановых балках, опирающихся на колонны здания или открытую эстакаду. Подвесной мостовой кран передвигается по нижним полкам двутавровых балок, закрепленных под нижними поясами строительных ферм здания.

    К основным параметрам мостовых кранов относятся: грузоподъемность, пролет моста, высота подъема, скорость подъема, скорость передвижения крана, скорость передвижения грузовой тележки, масса крана.

    Электрооборудование мостовых кранов по назначению подразделяется на основное и вспомогательное. Основным является оборудование электропривода, вспомогательным — оборудование рабочего и ремонтного освещения, сигнализации, измерительной аппаратуры.

    К основному электрооборудованию мостовых кранов относятся:

    • · асинхронные электродвигатели трехфазного переменного тока;
    • · аппараты управления электродвигателями контроллеры, командоконтроллеры, контакторы, магнитные пускатели, реле управления;
    • · аппараты регулирования частоты вращения электродвигателей — пускорегулирующие резисторы, тормозные машины;
    • · аппараты управления тормозами — тормозные электромагниты и электрогидравлические толкатели;
    • · аппараты электрической защиты — защитные панели, автоматические выключатели, реле максимального тока, реле минимального напряжения, тепловые реле, предохранители и другие аппараты, обеспечивающие максимальную и нулевую защиту электродвигателей;
    • · аппараты механической защиты — конечные выключатели и ограничители грузоподъемности, обеспечивающие защиту крана и его механизмов от перехода крайних положений и перегрузки;
    • · полупроводниковые выпрямители;
    • · аппараты и приборы, используемые для различных переключений и контроля.

    Для привода механизмов на мостовых кранах в основном устанавливают асинхронные электродвигатели трехфазного переменного тока как с короткозамкнутым, так и с фазным ротором кранового исполнения. Эти электродвигатели отличаются повышенной перегрузочной способностью как в механическом, так и в электрическом отношении. Кратность максимального вращающего момента этих электродвигателей по отношению к номинальному при повторном кратковременном режиме с ПВ, равным 25%, составляет 2,5—3. Указанные электродвигатели изготавливают в закрытом исполнении, с внешним обдувом и с противосыростной изоляцией.

    Контроллеры на мостовых кранах предназначены для управления работой (пуска, остановки, регулирования частоты вращения, изменения направления вращения) электродвигателей.

    Применяют контроллеры силовые ККТ и магнитные дистанционного управления. Магнитные контроллеры предназначены в электрооборудовании мостовых кранов для управления электроприводом на расстоянии. Все переключения в них осуществляются при помощи контакторов. Магнитный контроллер обладает рядом преимуществ по сравнению с силовым контроллером. Магнитным контроллером любой мощности управляют с помощью малогабаритного командоконтроллера без применения значительного усилия машиниста (крановщика).

    Контакторы магнитных контроллеров более износоустойчивые, чем контакты кулачковых контроллеров, Применение магнитных контроллеров позволяет автоматизировать операции пуска и торможения двигателя, что упрощает управление приводом и предохраняет двигатель от перегрузок. В комплект магнитных контроллеров асинхронными двигателями трехфазного переменного тока с фазным ротором, входят командоконтроллер, контакторная панель и пускорегулирующие резисторы. В отличие от силового контроллера командоконтроллер) не имеет контактов, рассчитанных на прохождение больших токов. Взамен них применены контактные мостики.

    В электроприводе мостовых кранов применяют также трех полюсные контакторы для замыкания и размыкания силовых электрических цепей.

    Для пуска, остановки и реверсирования асинхронных электродвигателей трехфазного переменного тока с короткозамкнутым ротором, а также для замыкания и размыкания (коммутации электрических цепей) используются в электрооборудовании мостовых кранов магнитные пускатели. Такие пускатели автоматически отключают двигатели при понижении напряжения и не допускают самопроизвольного включения двигателя после восстановления напряжения.

    Электрооборудование мостовых кранов оснащено реле различного назначения и исполнения. В электрических схемах мостовых кранов встречаются реле: тепловое, максимального тока, времени, промежуточное, минимального тока, тепловое реле.

    В цепи ротора электродвигателей для их плавного разгона, торможения и регулирования, частоты вращения применяют резисторы. Их устанавливают также в цепях управления и сигнализации, где они выполняют функцию ограничения напряжения или тока.

    Для снятия силовых (замыкающих) пружин двух колодочных тормозов и растормаживания рабочих механизмов мостовых кранов применяют специальные тормозные электромагниты) и электрогидравлические толкатели.

    Понижение напряжения с 380В до 24В или до 12В для питания осветительных переносных ламп осуществляется на мостовых кранах с помощью однофазных трансформаторов. Для питания электронагревателей кабины машиниста (крановщика), опускания груза в режиме динамического торможения на кранах устанавливают трехфазные трансформаторы, обеспечивающие понижение напряжения с 380В до 36В. На кране имеются также измерительные трансформаторы для подключения амперметров. Необходимый для потребления в электрооборудовании мостовых кранов постоянный ток получают путем преобразования переменного тока в постоянный через выпрямители.

    Среди применяемых на мостовых кранах видов электрооборудования особое место занимают конечные выключатели, непосредственно связанные с обеспечением безопасной работы кранов. На мостовых кранах применяют выключатели типов КУ, ВК, ВУ, ВПК.

    Для защиты электрооборудования и электрических сетей от больших токов предусмотрены плавкие предохранители. На мостовых кранах применяют трубчатые предохранители без наполнения ПР-2 и с наполнением ПН2, НПР, НПН.

    Предотвращение нарушения нормальных условий работы электрических цепей крана (перегрузка, короткое замыкание) производится с помощью автоматических выключателей.

    Кроме электрических аппаратов, для частой коммутации цепей электроприводов на мостовых кранах применяют различные конструкции рубильников и выключателей периодической коммутации цепей управления и силовых цепей.

    Выключатели периодической коммутации с ручным и ножным приводом используют соответственно для отключения линейного контактора и включения цепей управления. Выключатели с ручным приводом служат в качестве аварийных выключателей и имеют обозначение ВУ. Выключатели с ручным управлением применяют в ряде случаев в режиме командоконтроллеров.

    Для передачи электрической энергии применяются провода, кабели и шнуры. Изолированный провод имеет токопроводящие жилы, заключенные в изолированную оболочку (резиновую, винилитовую, полихлорвиниловую). Кабели обычно имеют защитную герметическую металлическую (алюминиевую, свинцовую), резиновую или винилитовую оболочку. Для монтажа электропроводки на мостовых кранах применяют исключительно провод с изоляцией. При этом для предохранения от механических повреждений провода прокладывают в отдельных газовых трубах, металлических рукавах или плетеной металлической оболочке. Кабели и провода разделяются: по роду изоляции — неизолированные и изолированные (при этом существует большое количество видов изоляции); по материалу проводящих жил — медные, алюминиевые; по форме и конструкции проводящей жилы — сплошные или многопроволочные, круглые жилы, секторные или сегментные жилы; по роду защитных оболочек — кабели, освинцованные, с голой свинцовой оболочкой, со свинцовой оболочкой и с броней из стальной ленты.

    К электрооборудованию относятся нагревательные приборы, кондиционеры, розетки кабины машиниста (крановщика).

    Таблица 1. Технические характеристики мостового крана

    Электрооборудование мостового крана (стр. 1 из 10)

    ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

    ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ СРЕДЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

    «КАМЕНСК – УРАЛЬСКИЙ ПОЛИТЕХНИЧЕСКИЙ КОЛЛЕДЖ»

    ТЕХНИЧЕСКАЯ ЭКСПЛУАТАЦИЯ И ОБСЛУЖИВАНИЕ ЭЛЕКТРИЧЕСКОГО И ЭЛЕКТРОМЕХАНИЧЕСКОГО ОБОРУДОВАНИЯ

    КУРСОВОЙ ПРОЕКТ

    ПО ДИСЦИПЛИНЕ «ЭЛЕКТРООБОРУДОВАНИЕ»

    ТЕМА: «ЭЛЕКТРООБОРУДОВАНИЕ МОСТОВОГО КРАНА»

    Выполнил: Е.А. Стрелов

    Основными направлениями экономического и социального развития являются дальнейшее повышение эффективности металлургии и повышения качества выпускаемой продукции.

    Важнейшими задачами в развитии металлургической промышленности является механизация трудовых работ и автоматизация производственных процессов. В решении этих задач значительная роль выпала на подъемно-транспортные механизмы, в первую очередь краны, применяющиеся на металлургических предприятиях.

    Следует заметить, что производительность цехов предприятия в значительной мере зависит от надежности работы и производительности кранов.

    Работа крана в условиях того или иного цеха специфична и зависит от характера конкретного производственного процесса.

    Конструкция крана в основном определяется из его назначения и специфики технологического процесса. Ряд узлов, например, механизм подъема и передвижения выполняются однотипными для кранов различных видов. Поэтому имеется много общего в вопросах выбора и эксплуатации электрооборудования крана. Оборудование крана стандартизовано, поэтому краны, различные по назначению и конструкции, комплектуются серийно-выпускаемым типовым электрооборудованием. Схемы управления отдельными кранами отличаются, это связано со спецификой цехов и назначением крана.

    Назначение крана

    Проектируемый кран, грузоподъемностью 10 т.с., предназначен для подъема и перемещения грузов в металлургическом производстве крытых помещениях при температуре окружающего воздуха от +400С до -400С.

    Кран предназначен для разгрузки железнодорожных составов с анодными блоками и погрузки на внутрицеховой транспорт.

    Технические характеристики механизмов крана, режимы их работы

    Проектируемый кран, грузоподъемностью Q=10 т.с. снабжен тремя основными механизмами:

    1. Механизм передвижения моста.

    2. Механизм передвижения тележки.

    3. Механизм подъема.

    Механизм передвижения моста

    Привод ходовых колес осуществляется от двух асинхронных двигателей с фазным ротором.

    Наименование данных механизма передвижения моста:

    1. Скорость передвижения моста υ (м/мин)………………………. 75

    6. Диаметр ходовых колес (мм)……………………………………. 500

    8. Тип редуктора………………………………. 1Ц2У 200-10-12(21)У1

    10. Группа режимов работы…………………..М7(5М ГОСТ 25835-83)

    Механизм передвижения тележки

    Движение тележки осуществляется асинхронным двигателем с фазным ротором через редуктор.

    Наименование данных механизма передвижения моста:

    1. Скорость передвижения тележки υ (м/мин)…………………. 37,8

    4. Тип редуктора……………………………………….Ц3ВК-160-20-16У1

    5. Полное передаточное число…………………………………………. 20

    7. Группа режимов работы………………………М6(4М ГОСТ 25835-83)

    Механизм подъема

    Привод механизма подъема осуществляется асинхронным двигателем с фазным ротором через шестереночный редуктор.

    Наименование данных механизма подъема:

    3. Число ветвей полиспаст…………………………………………………3

    7. Диаметр блока полиспаст(мм)……………………………………….406

    8. Диаметр уравнительного блока (мм)………………………………. 406

    9. Тип редуктора……………………………………..1Ц2У-400-25-11МУ1

    10. Полное передаточное число………………………………………….25

    11. Диаметр барабана (мм)……………………………………………. 504

    12. Группа режимов работы…………………….М7 (5М ГОСТ 25835-83)

    13. Скорость подъема υ (м/мин)………………………………………….12

    Режим работы крана

    Режим работы крановых механизмов – важный фактор при выборе мощности приводных электродвигателей, аппаратуры и системы управления. От него зависит и конструктивное исполнение механизмов.

    Режимы работы кранов металлургических цехов разнообразны и в основном определяются особенностями технологических процессов. При этом в ряде случаев даже однотипные краны работают в разных режимах. Неверный выбор режима при проектировании электропривода кранов ухудшает технико-экономические показатели всей установки. Так, например, выбор более тяжелого режима работы по сравнению с реальным приводит к завышению габаритов, массы и стоимости кранового оборудования. Выбор же более легкого режима означает повышенный износ электрооборудования, частые поломки и простой. Поэтому важно выбрать оптимальный режим работы кранового механизма.

    Режим работы кранового механизма характеризуется следующими показателями:

    1. Относительная продолжительность включения (ПВ)

    2. Среднесуточное время работы

    3. Число включений за 1 час электродвигателя

    4. Коэффициент нагрузки

    5. Коэффициент временности нагрузки

    6. Коэффициент использования механизма

    По правилам Госгортехнадзора для крановых механизмов установлено четыре номинальных режима работы:

    Легкий (Л), Средний (С), Тяжелый (Т) и Весьма тяжелый (ВТ).

    Для каждого механизма крана режим работы определяется отдельно, режим работы крана в целом устанавливается по механизму подъема. В соответствии со стандартом СЭВ 2077-80 все краны разделяются на 7 классов (А0-А6) ([2] стр. 7 табл. 1). Все механизмы крана работают в весьма тяжелом режиме (ВТ) ПВ=40%.

    Требования, предъявляемые к электроприводам крана

    Крановый электропривод работает в специфичных условиях, определяемых условиями работы крановых механизмов, к которым относятся: работа в повторно-кратковременном режиме при большом числе включений в час, различные внешние воздействия на оборудование крана.

    Выбранная схема электропривода должна удовлетворять следующим требованиям:

    — обеспечить надежность работы всех элементов и узлов механизма электропривода;

    — осуществить пуск, реверс, торможение привода, создание необходимых диапазонов регулирования скорости;

    — обеспечить надежность защиты электрооборудования от токов короткого замыкания и перегрузок, т.е. схема должна иметь все виды защиты, предусмотренные в ПУЭ.

    Управление работой крана осуществляется из кабины, в которой устанавливается защитная панель. Кроме защитной панели и установленного в ней электрооборудования в кабине крана размещены командоконтроллеры для управления механизмами крана, автомат для запитки освещения крана, кнопка включения сирены и другое.

    На мосту крана устанавливаются двигатели с тормозами. Кроме того, на мост вынесены ящики сопротивлений.

    На тележку устанавливаются двигатели подъема и передвижения тележки с тормозными механизмами. Электрооборудование тележки запитывается гибким кабелем.

    Обоснование выбора системы электропривода

    Все многообразие различных схем управления может быть разделено по следующим группам:

    1. По способу управления, непосредственно кулачковыми контроллерами. Весь процесс управления осуществляется непосредственно оператором (крановщиком).

    2. Управление кнопочными постами. Возможности управления ограничены особенностями пульта.

    3. Управление сложным комплексным устройством (магнитным контроллером с использованием преобразователя энергии или без него). Оператор выбирает только необходимые скорости, а процессы разгона, торможения и необходимые промежуточные операции осуществляются автоматически.

    Выбор системы управления для крановых механизмов осуществляется на основе анализа сравнительных технических данных, а именно: диапазона регулирования, способа управления, ресурса (уровень износостойкости), диапазона возможных скоростей, мощностей электроприводов, показателей динамики и энергии, а также дополнительных данных, определяющих условия эксплуатации электроприводов. Экономическая оценка систем управления должна базироваться на основании минимальных расходов, связанных с первоначальными затратами, эксплуатационными затратами на ремонт, а также затратами энергии, потребляемой из сети за период эксплуатации до капитального ремонта.

    Выбирается система с наилучшими экономическими показателями.

    Если к электроприводу крановых механизмов предъявляются повышенные требования в отношении регулирования скорости, обеспечения низких устойчивых условий скорости в различных режимах, то применяются двигатели постоянного тока, которые допускают большие перегрузки по моменту, позволяющие опускать и поднимать тяжелые грузы с пониженной скоростью. Однако использование двигателей постоянного тока внесет необходимость преобразования переменного тока в постоянный, что связано с увеличением капитальных затрат, дополнительных затрат энергии и эксплуатационных расходов.

    Мостовой кран

    Кран мостовой представляет собой грузоподъёмное оборудование, которое активно используется на производственных предприятиях, складах, строительных площадках. Транспортировка материалов выполняется за счёт перемещения их по подкрановому пути. В промышленности применяются модели с широким диапазоном характеристик. Выбор определяется особенностями сферы использования и параметрами грузов.

    Общие сведения

    Важная особенность кранов мостового типа – работа в трёх взаимно перпендикулярных направлениях. Груз может подниматься, двигается отдельно тележка или вся несущая конструкция. Выпускаются модели серийного исполнения, способные поднимать от 5 до 200 т и более. Рекомендуется выбирать оборудование с 20 % запасом производительности, чтобы исключить вероятность работы с перегрузом и повышенным износом узлов и механизмов вне зависимости от сложившейся производственной ситуации.

    В ходе эксплуатации важно учитывать скоростные характеристики техники:

    • подъём – 0,1‑0,3 м/с;
    • перемещение моста – до 2,5 м/с;
    • передвижение с грейфером – до 0,8 м/с;
    • ход тележки – до 0,8 м/с

    Управление мостовым краном в зависимости от характера выполняемых работ может производиться машинистом с кабины, с помощью пульта (оператор при этом будет находиться в цехе) или дистанционно.

    Классификация мостовых кранов

    В соответствии с требованиями ГОСТ все представленные на рынке модели делят на устройства общего и узкопрофильного назначения. Специализированные механизмы отличаются тем, что в их комплектацию включены захваты узкой направленности. К примеру, при работе с металлоломом используются магнитные мостовые краны, с сыпучими материалами — грейферы. Общепромышленные модели оснащаются крюком с автоматической защёлкой, что позволяет использовать их для перемещения грузов на стропилах.

    ГОСТ 27584-88 Краны мостовые и козловые электрические. Общие технические условия

    Отдельные виды мостовых кранов разрабатываются для эксплуатации в определённых отраслях производства с учётом особенностей поставленных задач, условий работы. Такую технику выпускают, к примеру, для металлургических предприятий. Они отличаются способностью выдерживать длительную эксплуатацию в условиях воздействия агрессивных сред, высоких температур, оснащаются специальными захватами (ковочными, литейными, для работы со слитками).

    Также бывают однобалочные мостовые краны и двухбалочные. Если мост состоит из одной балки, грузоподъёмное оборудование отличается сравнительно небольшим весом. Но это отрицательно сказывается на их грузоподъёмности: она не превысит 10 т. При этом возможна комплектация дополнительной консольной тележкой, что расширит сферу применения оборудования.

    Двухбалочные модели допускает использование не только стандартной грузовой тележки, но и дополнительных навесных механизмов. За счёт этого увеличивается сфера использования техники, расширяются возможности управления за счёт применения дистанционных пультов. Это мощные мостовые краны, активно задействованные на производственных предприятиях различных отраслей промышленности.

    По конструкции

    В зависимости от способа установки металлоконструкций на крановом пути различают подвесные и опорные модификации оборудования. В первом случае крепление выполняется на нижний, а во втором случае – на верхний горизонтальный пояс пролётной балки.

    Важным преимуществом подвесных механизмов является сравнительно невысокая стоимость и простота монтажных работ. Но грузоподъёмность таких механизмов не превышает 8 т. Конструкции отличаются небольшой высотностью, что позволяет увеличить рабочую зону в сравнении с опорными аналогами, имеющими большую производительность (до 500 т).

    По способу перемещения

    Мостовые модели стандартного исполнения перемещаются в ходе выполнения работ по параллельным путям. Но конструкция мостовых кранов позволяет использовать их в модификации, учитывающей особенности технологического процесса, характер размещения производственного оборудования. Для решения специализированных задач возможна установка грузоподъёмной техники со следующими принципами перемещения.

    • Радиальным. Механизм подъёма на балке сможет вращаться вокруг площадки, которая жёстко закреплена в центре цеха, по кольцевому рельсу.
    • Поворотным. Работы в отличие от предыдущего варианта могут выполняться в любой точке, ограничения в передвижениях связаны только с протяжённостью проложенных подкрановых путей.
    • Хордовым с меньшей площадью обслуживания в сравнении с радиальным. Из-за особенностей конструкции радиус вращения при этом останется неизменным.
    • Кольцевым с передвижением механизмов по рельсам разного диаметра. Конструкция в этом варианте несколько усложняется из-за необходимости использования ходовых колёс, отличающихся между собой по размеру во избежание проскальзывания.

    По грузоподъемности

    Грузоподъемность мостовых кранов – одна из основных характеристик техники. Наибольшее распространение получили модели, у которых этот параметр составляет 1‑50 т. В большинстве случаев для промышленного использования этого достаточно. Для выполнения узкопрофильных задач задействуют технику грузоподъёмностью до 500 т (к примеру, для монтажа турбины гидроэлектростанции).

    По типу привода

    Выпускаются мостовые модели с ручным и электроприводом. В первом случае в качестве основного рабочего механизма для передвижения применяются тали червячного типа. Это оптимальный вариант при необходимости регулярной работы с небольшими грузами в ходе сборочных или ремонтных работ на машиностроительных предприятиях.

    Электрический привод для мостового крана используется чаще, так как позволяет успешно работать с грузами высокой тоннажности без физических усилий со стороны оператора. Для передвижения конструкций используется до 4 электродвигателей (зависимости от требований к производительности). Для передачи вращения на колёса задействуют только редуктор или его комбинацию с трансмиссией.

    Общее устройство мостового крана

    В состав конструкции мостового крана входят следующие основные узлы.

    • Поперечные и продольные стальные балки, соединённые сваркой в жёсткую конструкцию. Для массивных моделей мостового кранового оборудования данный узел может быть выполнен в виде мощных решётчатых ферм в комплекте со сплошной балкой.
    • Мост крана с ходовыми колёсами. Он представляет собой металлическую конструкцию, предназначенную для того, чтобы по ней перемещалась тележка, поднимающая и опускающая грузы. Чаще всего материалом её изготовления является сталь 3.
    • Грузовая тележка с ведущими и ведомыми колёсными группами на раме. В её комплектацию входит электромотор, каретка, канатный барабан, редуктор, тормоз (у моделей, которые работают в условиях производства повышенной опасности, комплектацию может быть предусмотрен основной и дополнительный стопорный механизм), ограничитель высоты подъёма груза.
    • Крановые пути – рельсы из стали, по которым перемещается мост, двутавровые балки или направляющие.
    • Механизм подъема с электродвигателем. В качестве передаточного устройства используется редуктор с зубчатой передачей открытого исполнения в жёстком соединении с барабаном. При превышении веса перемещаемых грузов отметки 80 т имеются определённые конструктивные особенности: мостовой кран комплектуется дополнительно понижающей передачей или редуктором.
    • Механизм передвижения. В комплектацию могут быть включены цилиндрические, конические колёса. Привод для них может быть общим или раздельным.
    • Тормозная дискоколодочная или колодочная система (устанавливается в случае, когда скорость перемещения тележки превышает 32 м/минуту).
    • Кабина машиниста. Чаще всего она располагается ниже уровня моста.
    • Настилы, ограждения, лестницы.

    Мостовые краны комплектуются электрооборудованием, в перечень которого входит комплекс из 3 или 4 трёхфазных асинхронных моторов, толкателей, электромагнитов, ограничителей грузоподъёмности. В составе системы управления предусмотрены магнитные пускатели, контроллеры, реле управления. Также конструкцией предусматривается установка осветительных приборов, системы звуковой сигнализации, измерительных приборов. Для электропитания могут использоваться кабели или троллейные шины.

    Принцип работы мостового крана

    Важной особенностью принципа работы мостовых подъёмников является то, что на крановый путь во время передвижения приходится вся нагрузка от несущих элементов грузоподъёмного оборудования. При подаче сигнала на блок управления движение балки происходит по смонтированным на эстакадах рельсам. Грузовая тележка при этом движется непосредственно по мостовой балке.

    Для повышения функциональности техники активно применяются дополнительные навесные устройства. Тележка может использоваться в комплекте с лебёдкой, грейфером, электромагнитами. Возможно использование комбинированных механизмов (например, магнитно-грейферных кранов). Самый распространённый грузозахватный орган, применяемый в ходе эксплуатации – крюк, оснащённый автоматической защёлкой.

    Применение мостовых кранов

    Назначение каждой из представленных на рынке моделей мостовых грузоподъёмных устройств определяется исходя из особенностей их конструкции, функциональности, технических характеристик. Сфера использования техники указывается в инструкции по её эксплуатации.

    Мостовые краны применяются для перемещения грузов:

    • на металлургическом, машиностроительном производстве;
    • по территории складских помещений с помощью подвесных или опорных ручных или электрических механизмов;
    • на открытых или закрытых строительных площадках;
    • с помощью грейферов проводятся операции с насыпными материалами;
    • на сельскохозяйственных предприятиях.

    Выпускаются общепромышленные, химзащищённые и взрывобезопасные мостовые модели.

    При выполнении работ возможно использование различного грузозахватного навесного оборудования (электрических магнитов, грейферов, захватов, крюков). Компании-производители предлагают возможность заказать оборудование стандартной или индивидуальной комплектации в соответствии с техническими условиями будущей эксплуатации мостового крана.