Принцип работы автоматической коробки передач с гидротрансформатором

Устройство и принцип работы современного гидротрансформатора

Первый гидротрансформатор появился большее ста лет назад. Претерпев множество модификаций и доработок, этот эффективный способ плавной передачи крутящего момента сегодня применяется во многих сферах машиностроения, и автомобильная промышленность не стала исключением. Управлять автомобилем стало намного легче и комфортнее, так как теперь нет необходимости пользоваться педалью сцепления. Устройство и принцип работы гидротрансформатора, как и все гениальное, очень просты.

  1. История появления
  2. Устройство и принцип работы
  3. Преимущества
  4. Недостатки
  5. Режим блокировки
  6. Режим проскальзывания

История появления

Впервые принцип передачи крутящего момента посредством рециркуляции жидкости между двумя лопастными колесами без жесткой связи был запатентован немецким инженером Германом Феттингером в 1905 году. Устройства, работающие на основе данного принципа, получили название гидромуфта. В то время развитие судостроения требовало от конструкторов найти способ постепенной передачи крутящего момента от парового двигателя к огромным судовым винтам, находящимся в воде. При жесткой связи вода тормозила резкий ход лопастей при запуске, создавая чрезмерную обратную нагрузку на двигатель, валы и их соединения.

Впоследствии модернизированные гидромуфты стали использоваться на лондонских автобусах и первых дизельных локомотивах в целях обеспечить их плавное трогание с места. А еще позже гидромуфты облегчили жизнь и водителям автомобилей. Первый серийный автомобиль с гидротрансформатором, Oldsmobile Custom 8 Cruiser, сошел с конвейера завода General Motors в 1939 году.

Устройство и принцип работы

Гидротрансформатор представляет собой закрытую камеру тороидальной формы, внутри которой вплотную друг к другу соосно размещены насосное, реакторное и турбинное лопастные колеса. Внутренний объем гидротрансформатора заполнен циркулирующей по кругу, от одного колеса к другому, жидкостью для автоматических трансмиссий. Насосное колесо выполнено в корпусе гидротрансформатора и жестко соединено с коленчатым валом, т.е. вращается с оборотами двигателя. Турбинное колесо жестко связано с первичным валом автоматической коробки передач.

Между ними находится реакторное колесо, или статор. Реактор установлен на муфте свободного хода, которая позволяет ему вращаться только в одном направлении. Лопасти реактора имеют особую геометрию, благодаря которой поток жидкости, возвращаемый с турбинного колеса на насосное, изменяет свое направление, тем самым увеличивая крутящий момент на насосном колесе. Этим различаются гидротрансформатор и гидромуфта. В последней реактор отсутствует, и соответственно крутящий момент не увеличивается.

Гидротрансформатор – принцип работы

Принцип работы гидротрансформатора основан на передаче крутящего момента от двигателя к трансмиссии посредством рециркулирующего потока жидкости, без жесткой связи.

Ведущее насосное колесо, соединенное с вращающимся коленчатым валом двигателя, создает поток жидкости, который попадает на лопасти расположенного напротив турбинного колеса. Под воздействием жидкости оно приходит в движение и передает крутящий момент на первичный вал трансмиссии.

С повышением оборотов двигателя увеличивается скорость вращения насосного колеса, что приводит к нарастанию силы потока жидкости, увлекающей за собой турбинное колесо. Кроме того, жидкость, возвращаясь через лопасти реактора, получает дополнительное ускорение.

Поток жидкости трансформируется в зависимости от скорости вращения насосного колеса. В момент выравнивания скоростей турбинного и насосного колес реактор препятствует свободной циркуляции жидкости и начинает вращаться благодаря установленной муфте свободного хода. Все три колеса вращаются вместе, и система начинает работать в режиме гидромуфты, не увеличивая крутящий момент. При увеличении нагрузки на выходном валу скорость турбинного колеса замедляется относительно насосного, реактор блокируется и снова начинает трансформировать поток жидкости.

Преимущества

  1. Плавность движения и троганья с места.
  2. Снижение вибраций и нагрузок на трансмиссию от неравномерности работы двигателя.
  3. Возможность увеличения крутящего момента двигателя.
  4. Отсутствие необходимости обслуживания (замены элементов и т.д.).

Недостатки

  1. Низкий КПД (по причине отсутствия гидравлических потерь и жесткой связи с двигателем).
  2. Плохая динамика автомобиля, связанная с затратами мощности и времени на раскручивание потока жидкости.
  3. Высокая стоимость.

Режим блокировки

Для того, чтобы справиться с основными недостатками гидротраснформатора (низкий КПД и плохая динамика автомобиля), был разработан механизм блокировки. Принцип его работы схож с классическим сцеплением. Механизм состоит из блокировочной плиты, которая связана с турбинным колесом (а следовательно, с первичным валом КПП) через пружины демпфера крутильных колебаний. Плита на своей поверхности имеет фрикционную накладку. По команде блока управления трансмиссией, плита прижимается накладкой к внутренней поверхности корпуса гидротрансформатора при помощи давления жидкости. Крутящий момент начинает передаваться напрямую от двигателя к коробке передач без участия жидкости. Таким образом достигается снижение потерь и более высокий КПД. Блокировка может быть включена на любой передаче.

Режим проскальзывания

Блокировка гидротрансформатора может также быть неполной и работать в так называемом “режиме проскальзывания”. Блокировочная плита не полностью прижимается к рабочей поверхности, тем самым обеспечивается частичное проскальзывание фрикционной накладки. Крутящий момент предается одновременно через блокировочную плиту и циркулирующую жидкость. Благодаря применению данного режима у автомобиля значительно повышаются динамические качества, но при этом сохраняется плавность движения. Электроника обеспечивает включение муфты блокировки как можно раньше при разгоне, а выключение – максимально позже при понижении скорости.

Однако режим регулируемого проскальзывания имеет существенный недостаток, связанный с истиранием поверхностей фрикционов, которые к тому же подвергаются сильнейшим температурным воздействиям. Продукты износа попадают в масло, ухудшая его рабочие свойства. Режим проскальзывания позволяет сделать гидротрансформатор максимально эффективным, но при этом существенно сокращает срок его службы.

Устройство и принцип работы гидротрансформатора (бублика) АКПП

Гидротрансформатор является важнейшей деталью автомобиля, осуществляющей передачу и преобразование вращающего момента между двигателем и коробкой. Несмотря на достаточное простое устройство агрегата и его высокую надежность, он подвержен возникновению различных видов неисправностей, своевременное устранение которых снизит стоимость ремонта и продлит ресурс остальных деталей узла. Соблюдение небольшого количества рекомендаций продлит жизнь бублику.

Зачем нужен гидротрансформатор (бублик) в АКПП

Гидравлический трансформатор является одним из важнейших агрегатов автомобиля, обеспечивающий связь между мотором и трансмиссией, по сути выполняющий функции сцепления и некоторые другие.

Из-за внешнего сходства с хлебобулочным изделием он получил название «бублик» среди автомехаников.

Основные функции гидротрансформатора:

  • передача крутящего момента с его двукратным преобразованием в сторону увеличения;
  • частичное выполнение функции сцепления как в МКПП, при изменении ступеней бублик разрывает прямую связь ДВС и трансмиссии;
  • защита АКПП при быстром наборе скорости и торможении двигателем;
  • при смене передачи гидравлический трансформатор частично забирает крутящий момент на себя, обеспечивая плавную смену ступеней.

Устройство и принцип работы Бублика

Гидротрансформатор расположен между ДВС и трансмиссией и является составной частью АКПП, несмотря на нахождение вне нее (крепится к картеру планетарной коробки).

Бублик обеспечивает гидравлическое сцепление между мотором и трансмиссией посредством давления трансмиссионной жидкости, находящейся в нем (практически идентично работе ветряной мельницы).

  • реактор (статор);
  • кожух;
  • центробежный насос (насосное колесо);
  • обгонная муфта;
  • центростремительная турбина (турбинное колесо);
  • блокирующий механизм;
  • муфта свободного хода.

Бублик со стороны двигателя жестко крепится к коленчатому валу, а со стороны КПП – к ее валу. Трансмиссионное масло нагнетается внутрь бублика при помощи масляной помпы, которая поддерживает требуемое давление жидкости в устройстве.

Передача крутильного момента осуществляется за счет движения потоков трансмиссионной жидкости и давления, образованного их движением.

Режимы

При запуске ДВС в бублик подается рабочая жидкость при помощи специальной помпы и возрастает давление. Центробежное колесо начинает крутиться, статор и центростремительная турбина пока неподвижны.

Режимы работы бублика:

  1. Трансформация. При изменении положения селектора и увеличения подачи топливной смеси при нажатии на педаль газа осуществляется возрастание оборотов насосного колеса за счет движения коленвала. Увеличивающееся движение трансмиссионной жидкости запускает вращение турбинного колеса. Вихревые потоки трансмиссионной жидкости то перекидываются к неподвижному реакторному колесу, то возвращаются к турбинному, повышая его КПД. Крутильный момент передается на ведущие колеса, и автомобиль начинает ехать. В реакторе находится обгонная муфта, которая при значительной разнице во вращении насоса и турбины блокирует вращательное движение статора и осуществляется прямая передача вращающего момента двигателя на АКПП, специальные лопасти реакторного колеса повышают скорость потока от центростремительной турбины и возвращают его на центробежный насос, повышая крутящий момент. Если усиливается противодействие движению (подъем на горку), статор прекращает вращательное движение и увеличивает передачу вращательного момента насосному колесу. По достижении определенных параметров (необходимой скорости и величины вращающего момента) осуществляется смена ступени в АКПП.
  2. Гидромуфта. На определенной скорости синхронизируется вращение центробежного насоса и турбинного колеса, и потоки рабочей жидкости попадают на статор с обратной стороны, при котором движение осуществляется только в одном направлении. Устройство переходит в режим работы гидромуфты.
  3. Блокировка. При достижении определенных параметров электроника блокирует гидравлический трансформатор при помощи фрикционного диска и осуществляется прямая жесткая передача вращающего момента без потери мощности.

При смене ступеней бублик отключается для обеспечения плавности, затем снова начинает работать. С помощью такого процесса исключается вероятность «проскальзывания», повышается ресурс гидротрансформатора, снижается потеря мощности и уменьшается расход топливной смеси.

Электронный блок управления осуществляет моментальное изменение режима функционирования бублика, адаптируя его работу под изменившиеся условия.

Неисправности гидротрансформатора

АКПП с гидротрансформатором является надежным агрегатом, но иногда встречаются поломки как в планетарном узле, так и в бублике.

Симптомы неисправности гидравлического трансформатора:

  • незначительное пробуксовывание при начале движения;
  • вибрации и жужжание при движении транспортного средства;
  • толчки при смене положения рычага селектора;
  • механические шумы и стуки;
  • снижение разгонных характеристик;
  • запах расплавленной пластмассы;
  • при выборе ступеней мотор глохнет;
  • появление металлической стружки на щупе;
  • снижение уровня трансмиссионной жидкости;
  • шуршание в области бублика, которое может исчезнуть при начале движения.

Основные поломки гидротрансформатора:

  1. Повышенный износ опорных или промежуточных подшипников. При работе автомобиля в холостом режиме появляется характерный незначительный механический шум, исчезающий по мере увеличения скорости движения транспорта. Устраняется заменой вышедших из строя деталей.
  2. Вибрация, сначала появляющаяся при движении на высокой скорости, со временем увеличивающаяся и возникающая при всех режимах движения машины. Причиной этого является снижение свойств рабочей жидкости и загрязненность масляного фильтра. Лечится заменой старой трансмиссионной жидкости на новую качественную ATF жидкость, установкой нового фильтра.
  3. Падение разгонных характеристик автомобиля. Происходит из-за высокого износа обгонной муфты, вызывающей прекращение функционирования статора бублика и невозможности повышения вращающего момента. Для устранения неисправности необходимо заменить поврежденную деталь.
  4. При движении возникает сильный металлический стук и скрежет. Причиной такой поломки является разрушение лопастей насоса, турбины или статора. Данная неисправность устраняется заменой вышедших из строя составляющих или установкой нового гидротрансформатора.
  5. Запах расплавленного пластика возникает из-за перегрева агрегата, причиной которого может стать снижение уровня рабочей жидкости, засоренность охлаждающей системы коробки. Для устранения последствий перегрева необходимо заменить поврежденные пластиковые компоненты, прочистить систему охлаждения АКПП и полностью обновить трансмиссионную жидкость.
  6. Появление мелкой металлической стружки на щупе указывает в большинстве случаев на высокий износ торцевой шайбы. Эта неисправность устраняется путем установки новой детали, взамен поврежденной, и обновлением рабочей жидкости для удаления стружки.
  7. Машина глохнет при изменении режима функционирования АКПП или смене положения селектора. Причиной этого являются сбои в работе электроники, приводящие к блокировке бублика. Для устранения данной неисправности необходима профессиональная диагностика блока управления АКПП, при необходимости замена вышедших из строя электронных проборов.
  8. Прекращение движения транспортного средства. Происходит из-за отсутствия передачи вращающего момента от мотора к АКПП вследствие срезания шлиц на центростремительной турбине. В редких случаях подобная неисправность возникает при сбоях в электронном управлении. Проблема устраняется восстановлением шлиц (при возможности — это осуществить) или установкой нового гидравлического трансформатора.
  9. Уменьшение уровня рабочей жидкости. Причиной этого является нарушение герметичности корпуса (течи в районе сальников и уплотнителей). Устраняется заделыванием места протекания, заменой протекающих компонентов или установкой нового бублика.
Читайте также  ЗИЛ 130 расход топлива на 100 КМ

При появлении любого из вышеперечисленных симптомов необходимо срочно обратиться на станцию техобслуживания для проведения диагностических процедур и осуществления ремонта узла или его замены. Своевременный ремонт гидротрансформатора позволит избежать возникновения дальнейших поломок и существенно сократит затраты на ремонт АКПП.

Самостоятельный ремонт бублика достаточно сложная процедура из-за цельности и герметичности агрегата. Для замены вышедших из строя деталей следует аккуратно разрезать корпус, а после ремонта тщательно и герметично запаять.

В некоторых случаях при наличии серьезных и многочисленных повреждений различных составляющих гидравлического трансформатора со стороны финансовой составляющей проблемы бывает дешевле установить новый агрегат, чем устранять неисправности в старом.

Как продлить жизнь гидромуфте Автоматической КПП

Соблюдение определенных правил позволит увеличить ресурс работы гидротрансформатора.

Основные рекомендации для продления эксплуатационного периода бублика:

  • при отрицательной температуре внешней среды необходимо прогревать АКПП в холостом режиме в течение 7-10 минут для достижения рабочей температуры трансмиссионного масла и, как следствие, улучшения свойств рабочей жидкости;
  • при буксировании транспортного средства или езде по скользким поверхностям необходимо правильно выбирать режим для снижения вероятности проскальзывания бублика;
  • регулярная проверка уровня рабочей жидкости и ее состояния;
  • своевременно менять трансмиссионную жидкость, выбирая качественную и соответствующую типу АКПП;
  • плавный выбор ступеней с задержкой в 2-3 секунды;
  • замена масляного фильтра АКПП по мере необходимости;
  • своевременная замена прокладок и сальников бублика при пробеге свыше 150000 километров или агрессивной манере езды с повышенной нагрузкой на гидротрансформатор.

Несмотря на простоту узла и его надежность, гидротрансформатор подвержен ряду поломок с характерными для них признаками.

Для увеличения эксплуатационного периода бублика необходимо своевременно проводить диагностику и ремонт узла при появлении даже малейших симптомов неисправностей и придерживаться некоторых рекомендаций, способных заметно продлить жизнь гидротрансформатору.

Гидротрансформатор акпп принцип работы

Гидротрансформатор АКПП, принцип работы

Чтобы обеспечить плавность переключения передач и обеспечения беспрерывной передачи крутящего момента (для вариатора) используется совсем иной вид сцепления.

В автомобилях с вариатором и АКПП в качестве сцепления – элемента, передающего крутящий момент от силовой установки на коробку передач, выступает гидротрансформатор.

Особенность этого элемента, входящего в конструкцию трансмиссии, заключается в том, что передача усилия происходит посредством жидкости, то есть жесткой связи между мотором и КПП нет

Гидротрансформатор позволяет осуществить бесступенчатую передачу усилия, причем с возможностью изменения крутящего момента и скорости вращения.

Также в момент изменения ступени (в АКПП) гидротрансформатор позволяет разъединить между собой мотор и трансмиссию, а после плавно возобновить передачу усилия.

По сути устройство выполняет роль сцепления, но с некоторыми дополнительными функциями.

Устройство

Конструкция гидротрансформатора включает в себя всего несколько элементов:

  • Насосное колесо;
  • Турбинное колесо;
  • Статор, он же – реактор;
  • Корпус;
  • Механизм блокировки;

Монтируется гидротрансформатор на маховике двигателя, но одна из составляющих его имеет жесткую связь с валом коробки передач.

Если провести аналогию этого типа передачи с обычным сцеплением фрикционного типа, то насосное колесо выполняет роль ведущего диска (жестко соединено с коленчатым валом мотора), а турбинное – ведомого (прикрепленного к валу КПП). Вот только физического контакта между этими колесами нет.

Примечательно, что даже расположение этих колес идентично фрикционному сцеплению – турбинное колесо располагается между маховиком и насосным колесом.

Все составные части гидротрансформатора заключены в герметичный корпус, заполненный специальной рабочей жидкостью — маслом ATF. За счет своей формы этот элемент трансмиссии получил народное название «бублик».

Суть работы гидротрансформатора очень проста. На колесах устройства имеются лопасти, которые перенаправляют жидкость в определенном направлении.

Вращаясь вместе с маховиком, насосное колесо создает поток жидкости и направляет его на лопасти турбины, тем самым и обеспечивается передача усилия.

Если бы конструкция включала только эти два колеса, то гидротрансформатор не отличался бы от гидромуфты, у которой вращающий момент на обеих составляющих практически одинаков.

Но в задачу гидротрансформатора входит не только передача усилия, а и его изменение.

Так, при старте необходимо обеспечить увеличение крутящего момента на ведомом колесе (при начале движения), а во время равномерного движения – исключить так называемое «проскальзывание».

Для выполнения этих функций в конструкции предусмотрены реактор и механизм блокировки.

Реактор представляет собой еще одно лопастное колесо, но значительно меньшего диаметра и располагается оно между турбиной и насосом, с последним реактор связан посредством обгонной муфты.

В задачу этого элемента входит увеличение скорости потока жидкости, что и приводит к повышению крутящего момента.

Работает реактор так: при возникновении большой разницы между основными колесами гидротрансформатора, обгонная муфта блокирует реактор, не давая ему вращаться (из-за этого еще одно название составляющей – статор).

При этом его лопасти, имеющие специальную форму, увеличивают скорость движения потока жидкости, попадающего на него после прохождения турбинного колеса, и направляют его снова на насос.

Таким образом реактор значительно повышает крутящий момент, необходимый для создания достаточного усилия при начале движения.

При равномерном движении гидротрансформатор блокируются, то есть в нем появляется жесткая связь, и делает это используемый в конструкции механизм блокировки.

Ранее в АКПП эта составляющая срабатывала только на повышенных скоростях движения. Сейчас же, используемые электронные системы управления коробкой блокируют гидротрансформатор практически на всех ступенях.

То есть, как только крутящий момент для определенной передачи подходит к требуемым параметрам, механизм срабатывает.

При смене ступени он отключается, чтобы обеспечить плавность переключения и снова включается. Тем самым исключается вероятность «проскальзывания» гидротрансформатора, что повышает его ресурс, снижает потери усилия и уменьшает потребление топлива.

Примечательно, что механизм блокировки, по сути, представляет собой фрикционное сцепление, и работает он по тому же принципу. То есть в конструкции имеется фрикционный диск, который закреплен на турбине.

В отключенном состоянии блокировочного механизма этот диск находится в отжатом состоянии. При включении же блокировки, фрикционы прижимаются к корпусу гидротрансформатора, тем самым и достигается жесткая передача крутящего момента от мотора на КПП.

В целом, если рассмотреть функционирование гидротрансформатора, то существует три режима его работы:

  • Трансформация (включается, когда требуется повышение крутящего момента для создания большего усилия. В этом режиме работает реактор, обеспечивая повышение скорости движения потока);
  • Гидромуфта (в этом режиме реактор не задействован и вращающий момент на ведущем и ведомом колесе практически одинаков);
  • Блокировка (турбина жестко связана с корпусом для уменьшения потерь на «проскальзывание»).

Используемая для управления работой гидротрансформатора электронная система обеспечивает очень быструю смену режима его работы, подстраивая функционирование этого элемента под возникающие условия.

Гидротрансформатор АКПП | Признаки неисправности | Устройство

По мере развития технологии конструкция усложнялась и модернизировалась. В настоящее время трансформатор на автоматической коробкой передач выполняет функции сцепления. То есть во время приключений передач данный элемент размыкает связь коробки с двигателем. Сразу же после включения повышающей или понижающей передачи гидротрансформатор берет на себя часть крутящего момента, что позволяет обеспечить максимально плавное переключение ступеней.

Содержание :

Принцип работы | Общая информация | Устройство |

Конструкция гидротрансформатора для автоматической коробки передач состоит из трёх колец с лопастями. Все три кольца согласно вращаются и располагаются в одном корпусе. Внутри корпуса находится рабочая жидкость, которая позволяет смазывать и охлаждать подвижные элементы. Насаживается гидротрансформатор на коленчатый вал, и далее соединяется непосредственно с коробкой передач. Рабочая жидкость нагнетается внутрь корпуса устройства при помощи специальной помпы. Помпа позволяет обеспечить необходимое давление, а при проблемах с герметичностью конструкции появляются активные утечки рабочей жидкости, что в свою очередь приводит к повреждению механических вращающихся элементов.

Читайте также  Осушитель воздуха для компрессоров принцип действия

Современные гидротрансформаторы, которые используются на автомобилях с АКПП, имеют полностью компьютерное управление, а многочисленные датчики следят за давлением и скоростью движения валов внутри ядра трансформатора. Необходимо сказать, что подобное усложнение конструкции привело к снижению надёжности устройства и на устройство гидротрансформатора в целом. В особенности на эксплуатационный срок и показатели надёжности сказывается эксплуатация в максимально жёстких режимах, что характерно для современных автомобилей.

Работа гидротрансформатора Видео

Контроль работы гидротрансформатора и его оптимизация с работой коробки передач выполняется при помощи специального блока управления. Это полностью автоматическая система управления получает данные с многочисленных датчиков, установленных в коробке и самом гидротрансформаторе. При появлении каких-либо проблем в работе устройства автоматика выводит сообщение об ошибке. В отдельных случаях может отмечаться полная блокировка работы гидротрансформатора, что приводит к отключению двигателя при изменении режимов работы коробки. Также необходимо отметить, что большинство поломок трансформаторов происходит на механическом уровне. Поэтому при выполнении диагностики автомобиля точно определить характер и место поломки затруднительно. Необходимо разбирать повреждённый элемент и визуально проводить его осмотр. Только так возможно определить имеющуюся поломку.

Инженеры ведущих автопризводителей постоянно проводят изыскания, которые должны позволить повысить показатели надёжности техники и устранить проблемы в работе данного устройства. Появление новых конструкторских разработок позволяет существенно модернизировать гидротрансформатор, который сегодня может с легкостью использоваться на автомобилях, оснащенных дизельными моторами. Для таких дизельных моторов характерен высокий показатель крутящего момента. Если ранее трансмиссии с трудом справлялись с высокими показателями крутящего момента и достаточно быстро выходили из строя, то сегодня существенным образом повысилась надёжность автоматических коробок передач и гидротрансформаторов.


Гидротрансформатор АКПП устройство

Теоретически срок эксплуатации гидротрансформатора совпадает с эксплуатационным сроком автоматической коробки передач. Однако, как и любой другой механический элемент, он может выходить из строя и требовать ремонта. В отдельных случаях необходимо проводить полную замену гидротрансформатора, что приводит к существенным расходам автовладельца на ремонт гидротрансформатора.

Гидротрансформатор АКПП Признаки неисправности

Опишем основные симптомы поломок гидротрансформаторов, которые должны являться поводом для скорейшего обращения в специализированные ремонтные мастерские.

1 При переключении передач может быть слышен лёгкий механический звук. При увеличении оборотов и под нагрузкой механический звук исчезает. Подобное может свидетельствовать о проблемах с опорными подшипниками. Необходимо разбирать гидротрансформатор и оценивать состояние подшипников.

2 В скоростном диапазоне от 60 до 90 километров в час может отмечаться лёгкая вибрация. По мере ухудшения проблем с гидротрансформатором вибрация будет увеличиваться. Подобное может быть вызвано тем, что продукты износа рабочей жидкости могут забивать масляный фильтр. В данном случае ремонт гидротрансформатора заключается в замене масляного фильтра и рабочей жидкости гидротрансформатора. Как правило, требуется провести одновременно замену масла в самом моторе и коробке передач.

3 Наличием проблем с динамикой автомобиля свидетельствует о выходе из строя так называемой обгонной муфты. В данном случае необходимо разбирать гидротрансформатор и менять вышедшую из строя муфту.

4 Остановка автомобиля без возможности продолжения движения свидетельствует о повреждении шлица на турбинном колесе. Устранение неисправности заключается в установке новых шлицов или же замене всего турбинного колеса.

5 Появление характерного шуршащего шума при заведённом автомобиле свидетельствует о проблемах с подшипником, которые располагаются между турбинным или же реакторным колесом и крышкой гидротрансформатора. При движении такой шуршащий звук может полностью исчезать. В данном случае вам необходимо как можно раньше обратиться в сервисный центр и провести ремонтные работы. В большинстве случаев необходимо будет провести замену повреждённых игольчатых упорных подшипников. Стоимость такого ремонта неисправности гидротрансформатора не слишком высока.

6 При переключении передач может быть слышен громкий металлический стук. Подобное свидетельствует о деформации и выпадении лопаток. Ремонт заключается в замене повреждённого колеса в гидротрансформаторе.

7 Необходимо регулярно проверять состояние масла в гидротрансформаторе и коробке передач. При появлении на масляном щупе коробки передач алюминиевой пудры необходимо выполнить проверку муфты свободного хода, которая изготовлена из алюминиевого сплава. В большинстве случаев появления такой пудры на щупе свидетельствует о проблеме в «бублике» и износе торцевой шайбы.

8 На работающем стоящем автомобиле в районе коробки передач может появляться характерный запах плавящейся пластмассы. Подобное происходит по причине перегрева гидротрансформатора и плавления полимерных элементов и деталей данного устройства. Перегрев гидротрансформатора может возникать по нескольким причинам. В первую очередь это проблемы со смазкой. Так, например, при падении уровня масла отмечаются характерные признаки голодания коробки и гидротрансформатора. Также могут отмечаться проблемы с системой охлаждения акпп, которая не может качественно охлаждать масло в забитом теплообменнике. Ремонт в данном случае заключается в замене масла и проверке работоспособности системы охлаждения смазки.

9 При переключении передач или же при смене режимов работы коробки двигатель может глохнуть. Подобное свидетельствует о выходе из строя управляющей автоматики, которая блокирует работу гидротрансформатора. Ремонт заключается в замене вышедшего из строя блока управления.

Необходимо отметить тот факт, что каких-либо конкретных признаков неисправности гидротрансформатора нет. Поэтому в отдельных случаях специалисты сервисного центра не могут сразу определить признаки и характер поломки. Все это приводит к увеличению расходов на ремонт и неизменному простою автомобиля в сервисе.

Ремонт гидротрансформатора

Несмотря на кажущуюся сложность, ремонт гидротрансформатора не представляет особой сложности и может быть выполнен автовладельцем самостоятельно. Единственный нюанс состоит лишь в демонтаже гидротрансформатора с коробки передач. В данном случае необходимо использовать специальный ремкомплект, который позволит провести демонтажные работы. При проведении ремонтных работ корпус устройства разрезается, после чего проводится проверка состояния гидротрансформатора. Именно поэтому при ремонтных работах необходимо заменять не только уплотняющие кольца, но и сам корпус устройства. При ремонтных работах проводится замена сальника и уплотнительных колец. Использовать старые, пускай даже хорошо сохранившиеся, кольца и сальники запрещается. В отдельных случаях возможна сварка корпуса гидротрансформатора, что позволяет добиться полной герметичности устройства. После завершения работы вам необходимо установить отремонтированное устройство на коробку передач и провести балансировочные работы.

Необходимо отметить, что при определённых видах поломок гидротрансформатора его ремонт и замена вышедших из строя элементов нецелесообразна с экономической точки зрения. Куда проще приобрести новые устройства и установить его вместо повреждённого элемента.

Ремонт гидротрансформатора Видео

Как вы можете видеть, ремонт гидротрансформатора относительно несложен. Однако без соответствующей подготовки и опыта работы по ремонту автомобиля провести его самостоятельно не представляется возможным. Поэтому если вы сомневаетесь в своих силах, лучше всего обратиться к профессиональным специалистам. Стоимость нового гидротрансформатора может составить порядка тысячи долларов в зависимости от марки автомобиля.

Принцип действия АКПП

Оставьте заявку и получите диагностику АКПП в подарок

    ГлавнаяСтатьиДиагностика Принцип действия АКПП

Из чего состоит автоматическая коробка передач

Автоматическая коробка переключения передач (АКПП) является важнейшим элементом трансмиссии современного автомобиля, главное предназначение которого – прием, передача, изменение крутящего момента, направления и скорости движения. Рассмотрим устройство и принцип работы коробки автомата.
Основные узлы АКПП:

  1. Гидротрансформатор – устройство, которое с помощью рабочей жидкости преобразует и передает крутящий момент от входного вала.
  2. Планетарный редуктор – главный механизм АКПП, который представляет собой несколько систем шестерней, каждая система состоит из «солнечной шестерни», сателлитов, планетарного водила и коронной шестерни. Редуктор получает крутящий момент от гидротрансформатора и изменяет его, в соответствии с условиями движения.
  3. Система гидравлического управления (гидроблок) – сложный механический комплекс, предназначенный для управления планетарной системой.
  4. Устройства переключения передач – пакеты фрикционов, тормозная лента.

АКПП в разрезе:

Рассмотрим перечисленные узлы более подробно.

1. Гидротрансформатор.

Гидротрансформатор выполняет функции сцепления и служит для передачи крутящего момента от двигателя на трансмиссию. Основной элемент гидротрансформатора – гидромуфта, представляет собой два лопастных колеса, расположенные друг перед другом на минимальном расстоянии. Одно колесо, соединенное с маховиком двигателя, получило название насосное колесо. Другое, турбинное колесо соединяется с помощью вала с планетарным механизмом. Пространство между колесами заполнено рабочей жидкостью — трансмиссионным маслом. Под воздействием центробежной силы вязкая рабочая жидкость плавно вовлекает в движение турбинное колесо. Таким образом, между ведущим и ведомым валом нет жесткой связи, и как следствие – обеспечивается плавная передача вращения, без рывков и толчков.

Принцип работы гидромуфты:

По своей функциональности гидротрансформатор представляет собой гидромуфту, дополнительно оборудованную центральным лопастным колесом – реактором (статором). В начале движения реактор неподвижен, т.к его лопасти расположены под определенным углом, который расчитан так, чтобы удерживать отраженную от турбинного колеса рабочую жидкость. Если реактор отсутствует, то отраженная от турбины жидкость будет тормозить насосное колесо. Когда обороты насоса и турбины выравниваются (точка сцепления), реактор также начинает вращаться с той же скоростью – гидротрансформатор переходит в режим гидромуфты, т.е не усиливая, а только передавая крутящий момент.

Принцип работы гидротрансформатора:

2. Планетарный редуктор.

Планетарный редуктор состоит из следующих частей:

2.1. Планетарные элементы.

2.2. Муфты сцепления и тормоза.

2.3. Ленточные тормоза.

Планетарный элемент состоит из центрального узла – солнечной шестерни, вокруг которой расположены шестерни – сателлиты, которые устанавливаются на планетарное водило. С внешней стороны сателлиты сцеплены с коронной шестерней.

Планетарная передача:

Для переключения скорости в автомате с тремя передачами используется 2 планетарных ряда, а в АКПП с четырьмя передачами – 3 планетарных ряда.

Муфта сцепления состоит из чередующихся дисков и пластин, которые вращаются вместе с ведущим валом, а диски соединены с элементом планетарного ряда и приводятся в действие гидравлическим давлением.

Ленточный тормоз состоит из тормозной ленты и тормозного барабана. Один конец тормозной ленты жестко крепится к картеру АКПП, а второй соединен через рычажный механизм с поршнем гидропривода.

Читайте также  Дробилка для ПЭТ бутылок своими руками

Принцип работы первой передачи:

  1. Солнечная шестерня приводится в движение гидротрансформатором.
  2. Сателлиты блокируются, вращение передается на коронную шестерню.
  3. Передаточное число: — 2.4:1.
  4. Т.к в коробке используется минимум 2 планетарных ряда, то первый ряд вращает второй, а со второго вращение передается на выходной вал.

Принцип работы второй передачи:

Вторая передача реализуется с помощью двух планетарных рядов.

  1. Солнечная шестерня первого планетарного ряда приводит в движение сателлиты и водило, а коронная шестерня блокируется тормозной лентой. Передаточное число первого планетарного ряда: 2.2 : 1.
  2. Водило с сателлитами первого планетарного ряда передает вщращение на второй планетарный ряд, в котором солнечная шестерня заблокирована. Коронная шестерня второго ряда является выходом.

Передаточное число первого планетарного ряда: 0.67:1.

Общее передаточное число второй передачи: 2.2 х 0.67 = 1.47:1.

Принцип работы третьей передачи:

  1. Блокируется коронная шестерня
  2. Блокируются сателлиты. Такая конфигурация приводит к вращению всей планетарной системы как единого целого и обеспечивает передаточное число 1:1.

Принцип работы четвертой передачи:

Эта передача с повышенной скоростью вращения, обеспечивает скорость выходного вала выше чем скорость входного.

Солнечная шестерня вращается свободно, коронная шестерня заблокированна тормозной лентой. Передаточное число: 0.67:1.

Принцип работы задней передачи:

  1. Солнечная шестерня второго планетарного ряда приводится в движение входным валом, а водило сателлитов удерживается тормозной лентой.
  2. Солнечная шестерня первого планетарного ряда получает вращение от второго, но имеет противоположное направление. Передаточное число: -2:1.

3. Гидравлическая система управления.

Гидравлическая система управления (ГСУ) АКПП предназначена для автоматического управления трансмиссией. Изначально гидросистема осуществляла все управляющие и контрольные функции в АКПП во время движения: формировала все необходимые давления, определяла моменты переключения и качество переключения передач и т.д. С появлением электронных блоков управления гидросистема «делегировала» большинство своих функций электронике, играя роль, скорее, исполнительной системы.

ГСУ представляет собой комплекс, состоящий из резервуара (поддона с магнитом для сбора металлической стружки – результат износа элементов автомата), масляного насоса, центробежного регулятора, системы клапанов, исполняющих устройств и масляных каналов (магистралей). Очень важно, чтобы в резервуаре (поддоне или картере трансмиссии) всегда находился строго определенный уровень масла. Масло в системе выполняет функцию смазки, охлаждения и является рабочей жидкостью для системы автоматического переключения передач. Поддон через канал для щупа имеет доступ к атмосферному воздуху, чтобы насос мог втягивать масло и передавать его в систему. Масло проходит через фильтр и создает гидравлическое давление (рабочее давление), величина которого управляется регулятором давления.

Регулятор давления это клапан золотникового типа с пружиной, которая, в зависимости от своей жесткости, задает величину давления.

Регулятор давления:

В начальный момент пружина устанавливает клапан в крайнее левое положение, происходит открытие входного отверстия и перекрытие выходного. Жидкость продолжает поступать, давление увеличивается до тех пор, пока не сдвигается пружина. Клапан сдвигается вправо, открывая выходное отверстие и давление начинает падать. Затем процесс повторяется снова. В некоторых регуляторах давления вместо пружины используется дроссельное давление, что позволяет на выходе клапана получать рабочее давление, зависящее от режима работы двигателя.

В гидросистемах с электронным блоком управления давление регулируется электромагнитными клапанами или соленоидами. Соленоид управляется электрическими сигналами, параметры которых меняются в зависимости от скорости движения автомобиля, угла открытия дроссельной заслонки и других характеристик. Как и механические клапана, соленоиды постоянно находятся в циклическом режиме «Вкл»-«Выкл».

В зависимости от назначения клапана бывают:

  1. Предохранительные, для защиты от высокого давления.
  2. Управляющие потоками жидкости в каналах.
  3. Одноходовые управляют потоком в одной магистрали.
  4. Двухходовые управляют потоком в двух магистралях.
  5. Клапан выбора режима связан с рычагом селектора режимов.
  6. Клапан переключения для управления переключением передач.

Большая часть клапанов гидравлической системы управления расположена в клапанной коробке, корпус которой обычно изготовлен из сплава алюминия. Насос всасывает масло из поддона, которое, пройдя регулятор давления, попадает в клапанную коробку, весь корпус которой состоит из каналов разнообразной формы (гидроплита).

Каналы гидроплиты:

В клапанной коробке происходит перераспределение потока жидкости к соответствующим сервоприводам (гидроцилиндрам и бустерам), с помощью которых происходит управление фрикционными муфтами и тормозами.

Гидроцилиндр – исполнительный механизм системы управления АКПП, который преобразует давление рабочей жидкости в механическую работу, Давление жидкости вызывает перемещение поршня, тем самым включая и выключая фрикционные элементы управления. Обычно, гидроцилиндр используется для включения ленточного тормоза, а для блокировочной муфты или для дискового тормоза применяется бустер.

Гидроцилиндр и бустер:

4. Фрикционные диски.

Фрикционы (фрикционные диски) выполняют функции сцепления передач в АКПП. Представляют собой тонкие кольца двух видов: подвижные мягкие (соединены с шестерней) и металлические (неподвижно соединены с корпусом редуктора). Кольца устанавливаются на планетарные редукторы. При выключенной передаче кольца свободно вращаются относительно друг друга. В тот момент, когда передача включается, через систему управления на гидравлический цилиндр подается рабочая жидкость и фрикционные диски сжимаются, активируя нужную шестерню. Активировав или заблокировав ту или иную шестерню планетарного ряда, можно менять передаточное число механизма, и, как следствие — скорость вращения вала.

Для лучшего понимания работы АКПП рекомендуем к просмотру видео (3-D модель):

Для закрепления информации — посмотрите видео (2-D модель):

ZF center › Блог › Гидротрансформатор — принцип работы, основные элементы, причины и последствия износа.

Гидротрансформатор (ГТ) — один из элементов АКПП, выполняет важную функцию — передаёт крутящий момент от двигателя к механизму АКПП. Основная задача ГТ на начальном этапе, когда ГТ только появился в конструкции АКПП — иметь не жесткую связь между двигателем и механизмом коробки. Тогда ГТ состоял из двух деталей и назывался гидромуфтой. И это — первая функция ГТ. Далее в конструкцию ГТ было внедрено дополнительное реакторное колесо, и ГТ — стал выполнят функцию изменения крутящего момента (примерно 2х кратное) при разгоне. Собственно отсюда и пошло название гидротрансформатор.
Следующим шагом — было внедрение механической блокировки, которая позволяет физически «сцепить» насосное (ведущее) колесо и турбинное (ведомое) колесо. Делается это для передачи крутящего момента без проскальзывания, напрямую.
В таком виде, ГТ устанавливается на большинство современных типов АКПП.
Итак, основные функции ГТ:
— обеспечить не жесткую связь между двигателем и коробкой . Защищает акпп от резких толчков при изменении оборотов, позволяет остановить машину при работающем двигателе.
— преобразует крутящий момент на некоторых режимах.
— выполняет блокировку и разблокировку связи между двигателем и акпп в нужный момент (по команде блока управления).

Основные неисправности ГТ и внешние признаки

Самая частая неисправность — износ блокировки. Изнашивается или «засаливается» фрикционный слой фрикционной накладки или диска. Или падает давление в механизме блокировки (также по разным причинам). Блокировка начинает «проскальзывать». Для владельца это ощущается в виде вибрации, толчков. Иногда это может выглядеть как езда по «стиральной доске». Фактически происходит периодическое проскальзывание блокировки и коробка получает ударные переменные нагрузки, которые и воспринимаются как «толчки» при езде.
Алгоритм срабатывания блокировки — для разных коробок — разный. Для некоторых типов (например ZF) -блокировка срабатывает уже на 1й скорости. И далее муфта блокировки работает в режиме запланированного проскальзывания. Конструктор дал водителю ощущение «спортивности», при этом пожертвовал надежностью. Именно поэтому, вибрации от износа муфты блокировки могут начинаться уже на небольших скоростях.
Надо отметить, что изначально — блокировка ГТ задумывалась как элемент для повышения экономичности, и включалась при движении с постоянной скоростью на высших передачах. Блокировка ГТ обеспечивал отсутствие потерь при передаче крут.момента и повышала экономичность.

Другие неисправности ГТ — часто идут как «последствия» износа муфты блокировки:
— грязь от износа попадает масло, интенсивно его загрязняет. Грязное масло — быстро выводит из строя другие элементы АКПП, в частности подшипники трения — втулки на которых вращаются другие элементы в коробке.
— трение муфты блокировки — перегревает масло. Что в свою очередь приводит к повышенному износу других механизмов и ускоренной деградации масла.
— изношенная муфта приводит к вибрациям смежных элементов, их механическому износу. Интенсивно изнашиваются подшипники качения
— сильный износ подшипников и втулок -может в итоге привезти к механическому износу самих вращающихся турбин — задиры, фатальные поломки…

Компания ZFcenter выполняет комплекс работ по капитальному ремонту АКПП. При каждом капитальном ремонте АКПП, выполняет ремонт ГТ с полной разборкой и дефектовкой. По желаю Клиента, можно выполнить только ремонт ГТ — как уже снятого с машины и привезённого к нам, так и снятие-установка АКПП с последующим ремонтом ГТ. Мы также принимаем ГТ в ремонт, присланный нам из других регионов силами внешней Транспортной компании.

Важное примечание! Как описано выше, износ элементов ГТ — приводит к интенсивному износу других элементов АКПП «по цепочке». Поэтому ремонт только ГТ — не всегда решает проблему полностью. Мы рекомендуем нашим Клиентам — производить полный капитальный ремонт АКПП, даже если есть признаки износа ГТ.

Капитальный ремонт АКПП BMW, Audi, Land Rover, Jaguar, Volkswagen, Jeep, Cadillac, Infinity, Бесплатная диагностика АКПП. Онлайн консультации. Бесплатная эвакуация.
Москва