Принцип действия простейшего карбюратора

Принцип работы простейшего карбюратора

Процесс приготовления горючей смеси называется карбюрацией. Приготовление горючей смеси осуществляется в приборе, называемом карбюратором. Действие карбюратора основано на принципе пульверизации. Воздух, проходящий с большой скоростью у вершины трубки, погруженной в жидкость, создает разрежение, в результате которого жидкость по трубке поднимается и под действием струи воздуха распыливается.

В простейшем карбюраторе (рис.23) различают две основные части: поплавковую и смесительную камеры. В поплавковой камере расположен запорный механизм, состоящий из поплавка и игольчатого клапана с седлом. В смесительной камере, выполненной в виде трубы, располагается узкая горловина — диффузор, в которую выведена трубка — распылитель из поплавковой камеры. В начале распылителя расположено отверстие строго определенного сечения и формы — жиклер. Ниже диффузора расположен дроссель.

При заполнении поплавковой камеры уровень топлива повышается, поплавок, всплывая, давит на клапан и закрывает отверстие в седле .Если топливо не расходуется, то подача его в поплавковую камеру прекращается и уровень топлива остается постоянным. Выходное отверстие распылителя расположено несколько выше уровня топлива в поплавковой камере (1—2 мм).

Смесительная камера соединена с цилиндром двигателя впускным трубопроводом, и при такте впуска (впускной клапан открыт) разрежение из цилиндра двигателя передается через впускное отверстие, открытое клапаном, в смесительную камеру. Скорость воздуха, проходящего в диффузоре карбюратора, увеличивается, создавая в нем разрежение. За счет разности давлений в поплавковой (атмосферное) и смесительной (ниже атмосферного) камерах топливо начнет вытекать через распылитель. Проходящим воздухом струя этого топлива разбивается на капли и, испаряясь, интенсивно перемешивается с воздухом.

Количество подаваемой в цилиндр горючей смеси изменяется открытием дросселя или увеличением частоты вращения коленчатого вала двигателя.

Уровень топлива в поплавковой камере понижается, поплавок опускается, открывая отверстие в седле запорного клапана, и топливо снова поступает в поплавковую камеру. Поплавковая камера служит для под-! держания необходимого уровня топлива при работе двигателя, а смесительная камера — для приготовления смеси из паров топлива и воздуха.

Рис.23.Схема системы питания и устройство простейшего карбюратора:

1-топливный бак; 2-топливопровод; 3-топливный фильтр; 4-топливный насос; 5-жиклёр; 6-игольчатый клапан; 7-поплавок; 8-поплавковая камера; 9-компесационное отверствие; 10-воздушный фильтр; 11-воздушная заслонка; 12-диффузор; 13-распылитель; 14-дроссельная заслонка; 15-впускной трубопровод; 16-выпускной трубопровод; 17-глушитель

Простейший карбюратор может обеспечить приготовление смеси необходимого состава только при одном определенном установившемся режиме, т. е. при постоянной частоте вращения коленчатого вала двигателя и постоянно открытом дросселе. Практически работа двигателя все время происходит при переменных нагрузках и переменной частоте вращения коленчатого вала.

Для обеспечения работы двигателя карбюратор при каждом изменении нагрузки или частоты вращения коленчатого вала должен готовить строго определенный, наивыгоднейший для данного режима состав горючей смеси.

При пуске холодного двигателя, когда условия смесеобразования вследствие малой частоты вращения коленчатого вала двигателя плохие, простейший карбюратор не может приготовить смесь богатого состава. При малой частоте вращения коленчатого вала на холостом ходу, когда дроссель прикрыт, разрежение в диффузоре будет недостаточным и не может вызвать истечения топлива из распылителя. Поэтому простейший карбюратор также не может обеспечить работу двигателя на малой частоте вращения холостого хода. На средних нагрузках по мере открытия дросселя горючая смесь будет обогащаться в то время, когда для экономичной работы необходима смесь обедненного состава. При полных нагрузках и резком изменении нагрузки или частоты вращения коленчатого вала простейший карбюратор не обеспечивает необходимого обогащения смеси.

Контрольные вопросы:

1.Что собой представляет бензин и каковы его свойства?

2.Что собой представляет горючая смесь и где она приготовляется?

3.Что собой представляет рабочая смесь и где она приготовляется?

4.Для чего предназначена система питания бензинового двигателя?

5.Из каких приборов состоитсистема питания бензинового двигателя?

6.Что такое детонация и при каких условиях она возникает?

7.Какие режимы работы двигателя Вы знаете?

8.Расскажите устройство и принцип работы простейшего карбюратора.

Принцип работы и устройство карбюратора

Карбюратор – это обязательный узел питания двигателя внутреннего сгорания автомобилей и мотоциклов. До конца XX века карбюраторы устанавливались на большинство автомобилей, но в наши дни их прочно вытеснили более удобные и функциональные инжекторные системы. Сейчас они часто встречаются в автомобилях возрастом 20 и более лет.

Принцип работы и устройство простейшего карбюратора

В первом устройстве, изобретенном Л. Христофорисом в 1876 году, топливо нагревалось, испарялось, образовавшиеся пары и потоки воздуха смешивались. Спустя год решение усовершенствовали, использовав принцип топливного распыления, который стал основой для следующих проектов.

До широкого распространения привычных нам устройств были барботажные модели и мембранно-игольчатые. Первые — в виде бензинового бака, в котором близко от поверхности располагалась доска и пара патрубков для подачи из атмосферы и забора смеси топлива и воздуха в мотор. Воздух перемещался под доской, непосредственно над топливом, обогащался парами и становился горючей смесью. Это была простая, но рабочая система. Дроссельная заслонка находилась отдельно. На функционирование мотора с барботажным узлом влияли природные условия — испаряемость зависела от температуры. Такую систему было сложно регулировать, она была взрывоопасна.
Схема барботажного карбюратора.

Мембранно-игольчатое устройство размещается отдельно от бензобака. В нем было нескольких камер, жестко связанных с помощью штока. Седло клапана, через который подавалось топливо, запиралось иглой на штоке. Камеры были соединены топливным каналом и смесительной зоной. Параметры устройства определяли пружины, на которые надавливали мембраны. Такой карбюратор работал независимо от условий на улице и местоположения, был популярен в начале 19 века, когда его устанавливали на автомобилях и мототехнике, в самолетах с поршневыми моторами внутреннего сгорания.
Схема мембранно-игольчатого карбюратора.

Устройство карбюратора наших дней

Сегодня используются поплавковые модели, которые являются самыми усовершенствованными. Их можно увидеть на большинстве машин.
Устройство и работа карбюратора: 1 — регулировочный винт пускового устройства; 2 — штифт рычага 24, входящий в паз рычага 3; 3 — рычаг управления воздушной заслонкой; 4 — винт крепления тяги привода воздушной заслонки; 5 — регулировочный винт приоткрывания дроссельной заслонки первой камеры; 6 — рычаг дроссельной заслонки первой камеры; 7 — ось дроссельной заслонки первой камеры; 8 — рычаг привода дроссельной заслонки второй камеры; 9 — регулировочный винт количества смеси холостого хода; 10 — ось дроссельной заслонки второй камеры; 11 — рычаг дроссельной заслонки второй камеры; 12 — патрубок отсоса картерных газов в задроссельное пространство карбюратора; 13 — дроссельная заслонка второй камеры; 14 — выходные отверстия переходной системы второй камеры; 15 — корпус дроссельных заслонок; 16 — распылитель главной дозирующей системы второй камеры; 17 — малый диффузор; 18 — корпус топливного жиклера переходной системы второй камеры; 19 — распылитель ускорительного насоса; 20 — патрубок подачи топлива в карбюратор; 21 — распылитель эконостата; 22 — воздушная заслонка; 23 — шток пускового устройства; 24 — рычаг воздушной заслонки; 25 — крышка пускового устройства; 26 — штифт рычага 24, действующий от штока 23 пускового устройства; 27 — ось воздушной заслонки; 28 — крышка карбюратора; 29 — трубка с топливным жиклером эконостата; 30 — топливный фильтр; 31 — игольчатый клапан; 32 — эмульсионная трубка второй камеры; 33 — поплавок; 34 — главный топливный жиклер второй камеры; 35 — перепускной жиклер ускорительного насоса; 36 — рычаг привода дроссельных заслонок; 37 — рычаг привода ускорительного насоса; 38 — диафрагма ускорительного насоса; 39 — регулировочный винт качества (состава) смеси холостого хода; 40 — патрубок забора разрежения вакуумного регулятора опережения зажигания. 41 — корпус карбюраторов. 42 — электромагнитный запорный клапан; 43 — регулировочный винт добавочного воздуха заводской подрегулировки системы холостого хода; 44 — диафрагма пускового устройства.

Читайте также  Телескопический погрузчик маниту технические характеристики

Поплавковый карбюратор состоит из множества элементов:

  • Поплавковая камера для сохранения горючего на заданном уровне.
  • Поплавок, оснащенный специальной иглой, который используется для дозирования уровня бензина.
  • Смесительная камера ― для смешения топлива в мелкодисперсном виде с воздухом.
  • Диффузор — зауженное место для увеличения скорости воздуха.
  • Распылитель, оснащенный жиклером, который соединяет камеры, подает смесь в диффузор.
  • Заслонка дросселя — для регулировки потока рабочей жидкости.
  • Воздушная заслонка — для регулировки потока воздуха, поступающего в карбюратор. С помощью элемента создают смесь «обогащенную», «нормальную» или «бедную».
  • Система холостого хода — подает горючее мимо смесительной камеры по спецканалам в задроссельное пространство.
  • Эконостаты и экономайзеры — обеспечивают дополнительную подачу топлива при существенных нагрузках. Эконостаты работают от разрежения воздуха, экономайзерами управляют принудительно.
  • Подсос горючего — для принудительного обогащения топливной смеси. С помощью рычага водитель приоткрывает дроссельную заслонку, воздух проходит сквозь смесительную камеру и забирает больше горючего. В результате смесь становится обогащенной, помогает запустить холодный двигатель.

Принцип работы карбюратора

Сначала горючее направляется в поплавковую камеру. В момент достижения необходимого уровня поплавок поднимается и перекрывает клапан, через который подается топливо. Когда поплавок опускается, подача топлива возобновляется.

Далее топливо идет в смесительную камеру, где создается горючая смесь. Сверху подается воздух, который соединяется с горючим. В камере находится распылительная трубка с жиклером, а также дроссель и диффузор. Жиклер — это пробка, которая не допускает вытекание топлива из поплавковой камеры. Заслонка, соединенная с педалью, называется дросселем. При надавливании ногой, она открывается, и горючая смесь попадает в цилиндр. В результате машина набирает скорость. В диффузоре находится распределительная трубка.

В момент запуска в смесительной камере формируется разрежение, из распылителя разбрызгивается топливо. Поднимается поток воздуха, который при смешении с топливом, переносит горючее в цилиндр.

В новейших устройствах помимо смесительной и поплавковой камер, находится также пусковое и дозирующее устройство, конструкция холостого хода, экономайзер, ускорительный насос. Устаревшие модели не обеспечивают полноценную работу мотора, поскольку в зависимости от того, холодный или горячий двигатель, смесь должна быть разной. Если запускают холодный двигатель, требуется горючая смесь, обогащенная топливом. В случае, когда мотор долго работал, необходима смесь с небольшим включением топлива.

Для увеличения скорости или езды в нагруженной машине, нужна смесь, сильно обогащенная топливом. Аналогичная ситуация при движении на холостом ходу, на малых оборотах. Такие условия простой карбюратор обеспечить не в силах.

С целью обогащения смеси топливом применяют насос-ускоритель. Когда резко выжимают педаль, проходит воздух, который движется быстрее топлива. С этим связана нехватка топлива в горючей жидкости. При наличии насоса силовой агрегат работает мощнее.

Система холостого хода идеальна для малых оборотов. При таком режиме силовой агрегат функционирует на обогащенной смеси. Однако, одной дозирующей системы недостаточно, ведь на холостом ходу дроссель открывается лишь частично. В новейших карбюраторах горючая смесь формируется около дросселя, поскольку в этом месте, даже если дроссель открыт не полностью, создается необходимое разрежение.

Для запуска мотора требуется смесь, которая обогащена топливом. С этой целью в смесительной камере предусмотрена заслонка с клапаном, через который проходит воздух. На приборной панели автомобиля есть ручка для управления клапаном. При вытягивании ручки клапан приоткрывается, и объем воздуха в смесительной камере сокращается. А количество горючего в смеси возрастает. В результате даже первые порции смеси достаточно насыщены, и мотор быстро заводится. При наличии спускового устройства двигатель работает даже при пониженных температурах.

Возможности дозирующего устройства позволяют создавать смесь, подходящую для работы двигателя в разных режимах. С помощью системы автоматически регулируется состав смеси при работе мотора с малой и средней нагрузкой. В таком режиме топливо подается через дозирующую систему. Однако, даже при полном открытии дросселя горючего часто недостаточно. По этой причине, когда дроссель практически полностью открыт, рычаг, соединенный с ним, воздействует на тягу привода экономайзера — так открывается дополнительный проход из поплавковой камеры. В итоге двигатель функционирует более мощно.

Классификация карбюраторов

Все карбюраторы можно различать по следующим признакам:

  • По направлению движения потока различают горизонтальные и вертикальные модели.
  • По регулировке отверстия распылителя и формированию разрежения разделяют: системы с постоянным разрежением; с постоянным сечением (серийные устройства); с золотниковым дросселированием — модели для мототехники, в них вместо дроссельной заслонки объем поступающей смеси регулирует шибер-золотник.
  • По числу смесительных камер выпускают одно- и многокамерные модели. «Сдвоенные» устройства используются в моторах с цилиндрами, которые находятся далеко друг от друга. В результате каждая половина осуществляет впрыск в свои цилиндры.

Устройство автомобилей

Как работает карбюратор

Немного истории

Когда бензиновые двигатели предпринимали лишь робкие попытки завоевать место в конструкциях первых автомобилей, их система питания содержала специальный испаритель, который подогревал бензин, выпаривая легкие фракции, а затем поршень засасывал образовавшиеся пары вместе с воздухом в цилиндры. Такое решение проблемы приготовления горючей смеси оказалось не самым удачным по многим причинам, в том числе и из-за плохого перемешивания паров бензина с воздухом перед воспламенением смеси, т. е. некачественного смесеобразования.

Гениальная идея пришла в головы сразу нескольким изобретателям — двум венгерским инженерам Яношу Чонка и Донату Банки, а также немецкому инженеру Герману Майбаху, которые первыми предложили не испарять бензин, а распыливать его с помощью крохотных сопел — жиклеров в специальном устройстве, названном карбюратором. Венгерские изобретатели на полгода раньше запатентовали свои идеи, поэтому именно они считаются «отцами-родителями» карбюратора для бензинового двигателя, применяемого в качестве смесеобразователя и в современных системах питания многих автомобильных двигателей.

Итак, в 1893 году два венгра – Я. Чонка и Д. Банки представили на суд специалистов специальное устройство, предназначенное для эффективного распыливания бензина в воздушном потоке с последующим перемешиванием этих основных компонентов, обеспечивающих двигатель великолепным источником теплоты.

Согласно легенде, идея создания карбюратора посетила Банки, когда он, прогуливаясь по улицам Будапешта, случайно увидел, как продавщица цветов опрыскивает их, набрав воды в рот (прием, известный многим домохозяйкам). Знаменитые изобретения всегда сопровождают подобные легенды, достаточно вспомнить, что изобретение Р. Дизеля тоже связывают с вызывающей умиление историей — он накачивал ручным насосом велосипедное колесо и обжег руку из-за нагрева корпуса насоса, после чего «Эврика» посетила его гениальную голову.

Но вернемся к карбюратору, изобретенному Д. Банки и Я. Чонкой, и попробуем разобраться, как работает это устройство в самом примитивном варианте конструкции.

Простейший карбюратор

Процесс, используемый в карбюраторах для приготовления горючей смеси называют карбюрацией, и связан он с явлением пульверизации – распыливанием жидкости, вытекающей из особой трубки, в стремительном воздушном потоке. Жидкость (в нашем случае – бензин), распыливается, частично испаряется, и, интенсивно перемешиваясь с воздухом, образует горючую смесь, засасываемую поршнем в цилиндры двигателя.

При этом карбюратор должен обеспечивать следующее:

  • точное дозирование подачи топлива (требуемое соотношение количества воздуха и бензина в смеси);
  • качественное распыливание топлива, его испарение и тщательное перемешивание с воздухом;
  • дозирование подаваемой в цилиндры двигателя горючей смеси в соответствии с режимами его работы.
Читайте также  Переделка прицепа ММЗ 81021 на рессоры

Принципиальная схема простейшего карбюратора представлена на Рис. 1. Основными его элементами является поплавковая камера, топливный жиклер 3, дроссельная заслонка 8 и воздушный канал 6.
Поплавковая камера представляет собой емкость, наполненную строго нормированным запасом бензина, уровень которого поддерживается игольчатым клапаном и поплавковым запорным механизмом. Этот механизм по принципу действия аналогичен клапанному механизму, следящему за уровнем воды в бачке унитаза – при сливе воды поплавок опускается, специальный рычаг открывает запорный клапан, и бачок наполняется водой из водопроводной сети.
В поплавковой камере карбюраторов используется игольчатый клапан, который управляется поплавком 2. Из поплавковой камеры к воздушному каналу карбюратора проведена трубка с калиброванным отверстием – жиклером, через которую топливо может поступать в воздушный канал. Уровень бензина в этой трубке чуть ниже края распылителя, чтобы топливо не выливалось при неработающем двигателе.
Топливный жиклер 3 дозирует количество топлива, поступающее через распылитель 4 в воздушный канал карбюратора.

Незаполненный бензином объем поплавковой камеры сообщается особым каналом (1) с атмосферой или с верхней частью воздушного канала карбюратора (в последнем случае поплавковую камеру называют сбалансированной). Этот канал препятствует образованию разрежения в объеме поплавковой камеры, когда топливо начнет вытекать через распылитель в воздушный канал карбюратора.

Еще одна важная деталь – в том месте, где свободный конец распылителя выходит в воздушный канал карбюратора предусмотрено сужение канала – диффузор (7). Роль этого элемента конструкции можно понять, если вспомнить гидравлику и ее законы. Поток газа или жидкости, перемещаясь по любому руслу (в нашем случае – воздушный канал карбюратора) обладает определенным количеством энергии, которая для каждой порции потока остается неизменной во время движения.
Согласно знаменитому уравнению Бернулли, при увеличении скорости потока снижается давление внутри этого потока, и наоборот; таким образом поддерживается баланс энергии, перетекающей из кинетической формы во внутреннюю или потенциальную и обратно.
Итак, если скорость потока увеличить, то давление в потоке упадет, т. е. образуется относительное разрежение. Для увеличения скорости потока и предназначен диффузор – сужение, благодаря которому в воздушном канале карбюратора создается зона пониженного давления, и именно в эту зону выходит топливный распылитель, сообщенный с поплавковой камерой.

Вот и все элементы, обеспечивающие работу простейшего карбюратора. Теперь рассмотрим, как он работает.

При проворачивании коленчатого вала на такте всасывания в цилиндре двигателя образуется мощное разрежение, которое через впускной клапан передается в воздушный канал карбюратора. В результате атмосферный воздух засасывается в карбюратор, перемещаясь с большой скоростью вдоль воздушного канала. Проходя через диффузор воздушный поток увеличивает скорость, при этом создается зона пониженного давления, и из распылителя начинает выливаться топливо в виде небольшого фонтанчика.
Топливные капли разбиваются воздушным потоком, образовавшаяся бензиновая пыль подхватывается и увлекается по воздушному каналу к впускному трубопроводу, а затем попадает в цилиндр двигателя через открытый впускной клапан. Количество горючей смеси, поступающей в цилиндры, регулируется дроссельной заслонкой 8, соединенной с педалью акселератора.
Далее по известному сценарию – смесь воздуха и бензина сжимается и поджигается искрой, после чего начинается такт рабочего хода.

Во время движения горючей смеси по впускному тракту процесс смесеобразования продолжается. При этом часть неиспарившегося бензина испаряется, интенсивно перемешивается с воздухом, а часть топлива может выпадать в виде конденсата и осадка на стенки карбюратора, образуя так называемую топливную пленку.

В зависимости от расположения патрубка смесительной камеры и направления в нем потока смеси различают карбюраторы с восходящим, горизонтальным и падающим потоком.
В карбюраторах с восходящим потоком в смесительной камере горючая смесь движется снизу вверх.
В карбюраторах с горизонтальным потоком горючая смесь движется в патрубке смесительной камеры в горизонтальном направлении.
В карбюраторах с падающим потоком горючая смесь в патрубке смесительной камеры движется сверху вниз.

Карбюраторы с падающим потоком горючей смеси получили на автомобилях преимущественное распространение, поскольку при таком расположении патрубка смесительной камеры упрощается взаимное крепление элементов системы питания, улучшается наполнение цилиндров горючей смесью из-за малого сопротивления воздушному потоку, более удобен осмотр и обслуживание карбюратора.

Принцип работы простейшего карбюратора проще понять, просмотрев короткий видеоролик, представленный ниже.

Элементарный карбюратор

Для чего служит карбюратор?

Карбюратор нужен для приготовления горючей смеси из жидкого топлива и воздуха для питания карбюраторных двигателей внутреннего сгорания. Топливо в карбюраторе распыливается и перемешивается с воздухом, после чего подаётся в цилиндры.

Устройство и работа элементарного карбюратора

Принципиальная схема элементарного карбюратора показана на рисунке ниже.

Основными элементами карбюратора являются поплавковая камера 8 с поплавком 2 и запорным клапаном 1, топливный жиклер 7, дроссельная заслонка б, распылитель 4 и диффузор 5. Свободный от топлива объем поплавковой камеры сообщается, как показано на рисунке. с началом воздушного канала. В этом случае поплавковую камеру называют сбалансированной.

С помощью поплавка 2 и игольчатого клапана 1 в поплавковой камере 8 поддерживается примерно постоянный уровень топлива. Для предотвращения вытекания топлива через распылитель устье распылителя располагают выше уровня топлива в поплавковой камере на 2—8 мм.

Рис. Принципиальная схема простейшего карбюратора: 1 — запорный клапан; 2 — поплавок; 3 — балансировочный канал; 4 — распылитель; 5 — диффузор; 6 — дроссельная заслонка; 7 — жиклер; 8— поплавковая камера

Топливный жиклер 7 дозирует топливо, поступающее через распылитель 4 в воздушный канал карбюратора. Дроссельной заслонкой регулируется количество горючей смеси, подаваемой из карбюратора во впускной тракт и цилиндры двигателя.

На тракте впуска между окружающей средой и цилиндром создается перепад давлений, в результате которого воздух из окружающей среды поступает в воздушный канал карбюратора и движется по этому каналу. В диффузоре 5 сечение воздушного потока уменьшается, в результате чего повышается его скорость и создается местное разряжение. Максимального значения разряжение достигает в наиболее узкой части диффузора, где обычно устанавливается сопло распылителя 4. Под действием разряжения в диффузоре топливо из распылителя фонтанирует в воздушный канал. При выходе из сопла распылителя топливо подхватывается воздушным потоком и, перемещаясь по воздушному каналу со значительно меньшей скоростью, чем воздух, мелко распыляется. Затем в смесительной камере, которая находится в зоне дроссельной заслонки, распыленное топливо частично испаряется, образуя горючую смесь.

В зависимости от направления потока горючей смеси различают карбюраторы с восходящим, падающим и горизонтальным потоками. Наибольшее распространение получили карбюраторы с падающим потоком, так как они обеспечивают более равномерное распределение горючей смеси по цилиндрам, что улучшает мощностные и экономические показатели двигателя.

В зависимости от количества смесительных камер различают однокамерные и двухкамерные карбюраторы. Применение двух и более камер также позволяет улучшить смесеобразование, т.е. обеспечить более качественное перемешивание топлива с воздухом и равномерное распределение смеси по цилиндрам в многоцилиндровом двигателе.

Кто изобрел первый карбюратор?

Первый в мире карбюратор был изобретен совместно венгерским инженером и изобретателем Яношем Чонка и венгерским физиком Донатом Банки в 1893 году.

Изобретение Банки и Чонкой карбюратора внесло большой вклад в развитие автомобильной промышленности, т.к. до этого момента не было придумано более эффективного способа правильно смешивать топливо и воздух для двигателя. Ходят слухи, что идею для создания карбюратора Банки позаимствовал у цветочницы, когда случайно обратил внимание на то, как она опрыскивает свои цветы водой изо рта.

Читайте также  Гидромоторы виды и принцип работы

Устройство и работа простейшего карбюратора

Устройство и работа простейшего карбюратора. Для грамотной эксплуатации карбюратора необходимо изучить прежде всего конструктивные его особенности и понять принципы работы систем на различных режимах, знать возможные неисправности и разрегулировки, причины возникновения, а также методы их обнаружения и устранения.

Рис. 2. Принципиальная схема простейшего карбюратора:
1 — поплавковая камера; 2 – рычаг; 3 – поплавок; 4 – игла; 5 — топливный клапан; 6 — топливный канал; 7 — распылитель; 8 — главный воздушный канал; 9 – диффузор; 10 — дроссельная заслонка; 11 — топливный жиклер.

В поплавковой камере за счет поплавка с иглой и топливного клапана поддерживается постоянный уровень топлива h, поступающего из бензинового бака.

Главный воздушный канал обеспечивает подачу воздуха в карбюратор. В средней части он сужается, образуя диффузор, предназначенный для увеличения скорости воздушного потока и обеспечивающий улучшение условий испарения топлива и смесеобразования.

Дроссельная заслонка 10 предназначена для изменения количества горючей смеси, поступающей в цилиндры двигателя в соответствии с требуемой мощностью.

Истечение из жиклера топлива сопровождается затратой энергии на его поднятие к распылителю 7. Распад струи топлива начинается при разности скоростей движения топлива и воздушного потока равной 4—6 м/с. В современном карбюраторе размер капель составляет 20—120 мкм.

Оптимальной является величина капель равная 50 мкм. При этом мелкость распыливания (дробления) топлива уменьшается с повышением температуры топлива за счет снижения коэффициента поверхностного натяжения и увеличения разности относительной скорости топлива и воздушного потока. Скорость истечения топлива в 25 раз меньше скорости воздушного потока.

Работа карбюратора осуществляется в соответствии с эжекционным (пульверизационным) принципом. Под действием разрежения, представляющим разность между давлением в поплавковой камере и в диффузоре карбюратора, топливо из поплавковой камеры через топливный жиклер и распылитель поступает в диффузор, а затем в главный воздушный канал.

В современных карбюраторах истечение топлива начинается при достижении разрежения 100 Па (10 мм вод. ст.). При меньших значениях через карбюратор поступает только чистый воздух. Уменьшение давления в зоне распылителя обусловлено ростом скорости воздушного потока в диффузоре и местного сопротивления.

При неработающем двигателе давление в поплавковой камере и в зоне распылителя в диффузоре одинаковое. При пуске двигателя разрежение, возникающее в цилиндре при ходе всасывания, передается через впускной трубопровод и главный воздушный жиклер в зону распылителя. В результате за счет возникшей разности давления в поплавковой камере и диффузоре топливо поступает из поплавковой камеры к распылителю и вытекает из него в главный воздушный канал, смешивается с воздухом и поступает в цилиндры.

Повышение скорости потока воздуха при его прохождении через диффузор приводит к дальнейшему снижению давления в зоне распылителя. Уменьшать сечение диффузора можно только до определенного предела, так как в дальнейшем это вызывает повышенное сопротивление для прохода воздуха, что сопровождается снижением мощности двигателя из-за уменьшения коэффициента наполнения цилиндров.

Образование горючей смеси в смесительной камере карбюратора происходит не в полном объеме. Часть топлива в виде капелек не успевает испариться и перемешаться с воздухом. Не испарившиеся капельки топлива движутся в потоке воздуха и оседают на стенках смесительной камеры и впускного трубопровода. Топливо, осевшее на стенки, образует пленку, которая движется с малой скоростью.

Чтобы испарить пленку топлива, впускной трубопровод при работе двигателя подогревается. Чаще всего используется жидкостный подогрев (от системы охлаждения двигателя) или подогрев теплом отработавших газов. Таким образом, можно считать, что образование горючей смеси заканчивается в конце впускного трубопровода двигателя.

В зависимости от направления потока воздуха в смесеобразующем устройстве, карбюраторы подразделяются на несколько типов. Наиболее широко применяют карбюраторы, в которых горючая смесь движется сверху вниз (рис. 2). Такие карбюраторы называют карбюраторами с падающим потоком смеси. Они обеспечивают высокие мощностные и экономические показатели и удобное для обслуживания расположение на двигателе. Карбюраторы с движением горючей смеси вверх называют карбюраторами с восходящим потоком. Они относятся к устаревшим конструкциям, и поэтому нами рассматриваться не будут.

Для современных многоцилиндровых двигателей стали применять двухкамерные карбюраторы с параллельным и последовательным открытием дроссельных заслонок. Название «двухкамерные» карбюраторы получили по числу имеющихся в них смесительных устройств, или смесительных камер. Двухкамерный карбюратор (рис. 3) с параллельным открытием дроссельных заслонок имеет две смесительные камеры 2, одну поплавковую камеру 1 и две дроссельные заслонки 3, закрепленные на одной оси. При повороте оси дроссельные заслонки будут открывать сечение выпускных патрубков 4 карбюратора синхронно, обеспечивая параллельное действие смесительных камер. Каждая смесительная камера карбюратора отдельным трубопроводом соединяется с группой цилиндров и питает их горючей смесью.

Двухкамерный карбюратор с последовательным открытием дроссельных заслонок имеет примерно такое же устройство. Разница заключается лишь в приводе дроссельных заслонок и конструкции выпускного патрубка, который делается общим для обеих смесительных камер. При работе этого карбюратора вначале открывается дроссельная заслонка одной камеры (основной). Как только первая заслонка откроется на 70—80% от полного открытия, начинает открываться дроссельная заслонка второй камеры (дополнительной). При этом вступает в работу дополнительная смесительная камера, обеспечивая поступление в цилиндры большого количества горючей смеси.

Рис. 3. Двухкамерный карбюратор с параллельным открытием дроссельных заслонок: 1— поплавковая камера; 2 — смесительные камеры; 3 — дроссельные заслонки; 4 — выпускные патрубки карбюратора.

Число камер в карбюраторах не ограничивается двумя, но определяется числом и расположением цилиндров двигателя. Так на двигателе БМВ 740 установлен карбюратор, имеющий 4 камеры, причем работающий как два двухкамерных карбюратора с последовательным открытием дроссельных заслонок. Использование многокамерных (двухкамерных) карбюраторов позволяет улучшить наполнение цилиндров двигателя горючей смесью, так как уменьшаются потери напора смеси во впускных трубопроводах. Это объясняется тем, что смесь движется постоянно в одном направлении. Особенно хорошие результаты дают такие карбюраторы в V-образных двигателях, где каждая камера карбюратора снабжает горючей смесью один ряд цилиндров.

Применение многокамерных карбюраторов обеспечивает увеличение мощности двигателя, снижение расхода топлива и токсичности отработавших газов. Это преимущество многокамерных карбюраторов наиболее полно проявляется у карбюраторов с последовательным открытием дроссельных заслонок.

Карбюраторы Автомобильные — Солекс, Озон.
Пособие по ремонту и обслуживанию автомобильных карбюраторов марки — Озон и Солекс. В каждом руководстве изложены принципы работы основных систем карбюратора, описана конструкция карбюраторов семейства «Солекс» и «Озон». Подробно рассмотрены возможные неисправности, их причины и способы устранения. Процессы регулировки, ремонта и доработки карбюраторов проиллюстрированы и снабжены подробными комментариями.
Инструкции по ремонту карбюраторов предназначены для водителей, желающих самостоятельно обслуживать и ремонтировать автомобили с двигателями, оборудованными карбюраторы марки «Солекс» и «Озон».