Система подачи воздуха в дизельный двигатель

MaZDa-BELARUSS › Блог › Система питания дизельного двигателя

Дизельный двигатель работает по другим принципам, совершенно не таким, по которым работает бензиновый двигатель. Именно этим и обусловлено устройство системы питания дизельного двигателя. Если упрощенно, то в дизелях, все построено на возникновении высокой температуры при сильном сжатии. Именно эта температура и является тем катализатором, который запускает горение топливной смеси.

Система питания дизельного двигателя
Как работает дизельный двигатель?

Изначально цилиндры дизеля заполняются воздухом. Поршень в цилиндре идет вверх, сжимая воздух, и при этом повышается температура сжатого воздуха. Причем повышается до такой температуры, которой достаточно для того, чтобы произошло воспламенение дизельного топлива, вернее смеси дизельного топлива и воздуха.

Как только температура доходит до максимальной, а это происходит в конце такта движения поршня, происходит впрыск дизтоплива посредством форсунки. Топливо не просто поступает струей, а распыляется в мелкодисперсное облако. И дальше под воздействием температуры сжатого воздуха происходит объемный взрыв воздушно-топливной смеси. Давление под воздействием взрыва критически вырастает, и именно это давление начинает двигать поршень, который идет вниз, и при этом совершается работа в физическом понимании этого термина.

Подачу топлива в двигатель и некоторые другие функции обеспечивает система питания дизельного двигателя.

Что входит в систему питания дизельного двигателя:

• топливный бак;
• подкачивающий насос;
• топливный фильтр;
• топливный насос высокого давления;
• свеча накаливания;
• форсунка.

Подкачивающий насос забирает топливо из топливного бака и направляет его в топливный насос высокого давления (ТНВД). В нем есть несколько секций. Число секций соответствует числу цилиндров в двигателе. Каждая из секций ТНВД работает на один цилиндр дизельного двигателя.

Топливный насос высокого давления (ТНВД) устроен следующим образом. Внутри насоса, по всей его длине в нижней части расположен вращающийся вал, который имеет кулачки. Вал ТНВД получает вращение от распределительного вала двигателя.

Кулачки оказывают воздействие на толкатели, которые, в свою очередь, заставляют работать плунжеры. Плунжер – это, по сути, поршень, который двигается вверх-вниз. Идя вверх, плунжер создает давление топлива внутри цилиндра. И именно это давление выталкивает топливо через топливную магистраль к форсунке.

Топливо, которое приходит в топливный насос высокого давления, находится под низким давлением и его явно не хватает, чтобы заставить топливо не только двигаться к форсунке, но и распыляться. Плунжер в нижней своей фазе подхватывает топливо и двигает его вверх секции (цилиндра). При этом давление значительно вырастает. Причем этого давления уже хватает для того, чтобы произошло качественное распыление дизтоплива внутри цилиндра. Давление топлива внутри секции топливного насоса может достигать показателя 2000 Атм.

Плунжер не только нагнетает топливо, но и регулирует количество подаваемого топлива на форсунку. Для этого у плунжера есть подвижная часть, которая может открывать или закрывать канавки внутри него. И эта подвижная часть соединена с педалью газа в кабине водителя. От угла поворота плунжера зависит степень открытия каналов прохождения топлива и зависит количество топлива, которое будет подаваться на форсунку. Поворот плунжера происходит за счет рейки, которая соединена с рычагом, который, в свою очередь, соединяется с педалью газа в кабине автомобиля.

В верхней части секции ТНВД находится клапан, который открывается под определенным давлением и закрывается, если давления недостаточно. Т.е. если плунжер находится в нижней точке, клапан закрыт и топливо из магистрали, которая идет к форсунке, не может обратно вернуться в ТНВД.

В секции создается давление, которого хватает для того, чтобы был произведен впрыск топлива в цилиндр. Топливо поступает к форсунке по магистрали. И уже форсунка, которая является управляемой, в нужный момент распыляет топливо внутри цилиндра.

Форсунки могут быть с механическим управлением или с электромагнитным управлением.

В обычной механической форсунке открытие отверстия распыления зависит от давления, которое возникло в топливной магистрали. Отверстие форсунки перекрыто иглой, которая соединена с неким подобием поршня, расположенным вверху форсунки. Пока давления нет, игла перекрывает выход топлива через отверстие распылителя. Как только топливо поступает под давлением, поршень идет вверх и тянет иглу. Происходит открытие отверстия, за которым следует распыление.

Свеча накаливания, которая находится в каждом цилиндре, не предназначена для того, чтобы непосредственно воспламенять топливную смесь. Свеча накаливания предварительно разогревает воздух в специальной камере перед тем, как этот воздух попадает в цилиндр.

Если разобраться, свеча накаливания всего лишь облегчает запуск двигателя, поскольку воздух, перед тем как попадать в цилиндр, уже нагрет до определенной температуры. В принципе в достаточно теплую погоду, или когда двигатель горячий, запуск дизеля может произойти и без предварительного подогрева воздуха. Но в холодную погоду, такое невозможно.

Более современная система питания дизельного двигателя предполагает наличие ТНВД, в котором нет секций по количеству цилиндров, зато есть общая магистраль для всех форсунок. Т.е. насос так и создает высокое давление, но оно общее для всех форсунок. И каждый цилиндр имеет индивидуальный впрыск топлива.

Форсунки, которые используются при такой системе, управляются не по механическому принципу, а посредством электрических импульсов, которые на них поступают от блока управления. По сути, в каждой форсунке стоит электромагнитный клапан, который открывает или закрывает распыление топлива.

Электронный блок управления двигателем получает информацию с нескольких датчиков и, переварив информацию, подает сигнал на электромагнитный элемент управления форсунки.

Такая система питания дизельного двигателя наиболее современна и наиболее экономична. Так как никакая механика не сравнится с электроникой.

Назначение воздухозаборника и особенности системы подачи воздуха в двигатель

Принцип действия двигателя внутреннего сгорания заключается в преобразовании тепловой энергии сгоревшего топлива в механическую. Для этого в камеру сгорания поступает горючая смесь, состоящая из топлива и воздуха, а затем воспламеняется. Оптимальное соотношение компонентов обеспечивает получение максимальных динамических характеристик. За забор и впуск воздуха в цилиндры двигателя отвечает соответствующая система питания.

Основные системы наддува

Независимо от конструкции, воздух в двигатель попадает из атмосферы. Это актуально как для бензиновых, так и дизельных модификаций. В общем случае в схему входят:

  • воздухозаборник;
  • фильтр;
  • впускной патрубок;
  • турбокомпрессор;
  • дроссельная заслонка (для бензиновых двигателей);
  • промежуточный радиатор;
  • впускной коллектор.

Турбокомпрессором (турбиной) оснащают дизельные моторы, но принудительным наддувом оборудуют также и работающие на бензине. Наддув позволяет силовому агрегату развить более высокую мощность за счёт генерации большего давления.

Система подачи воздуха на бензиновых двигателях

Конструкция систем питания воздухом моторов любых моделей принципиальных отличий не имеет. Первый элемент — воздухозаборник, компонент двигателя, который отвечает за сообщение с атмосферой. Его устанавливают под капотом так, чтобы эффективно забирать воздушные массы на всех скоростных режимах. Раструб воздухозаборника закреплён корпусом головной оптики с правой или с левой стороны авто, около радиаторной решётки.

После попадания в заборник поток движется в фильтр. Это обязательный компонент воздушной системы двигателя, отвечающий за очистку потока от пыли. Если мельчайшие частицы из атмосферы будут беспрепятственно поступать в ДВС, начнётся интенсивный износ стенок цилиндров, что приведёт к поломке мотора. Фильтр очистки поступающего воздуха включает фильтрующий элемент и корпус. Устанавливают его в подкапотном пространстве недалеко от воздухозаборника, к корпусу авто крепят через резиновые демпферы.

Миновав фильтр, воздушный поток попадает во впускной патрубок. Это соединительная труба, предназначенная для дистанцирования элементов системы. В нижней части патрубка делают «ловушку» для воды. Это небольшое углубление, куда стекает жидкость, попавшая в устройство для подачи воздуха после преодоления глубоких луж.

В корпусе фильтра или во впускном патрубке устанавливают датчик, измеряющий скорость движения воздушных масс.

Регулирует обороты коленвала дроссельная заслонка. Механизм напрямую связан с педалью акселератора, при нажатии на которую увеличивается воздушный поток. В корпусе дросселя расположен регулятор холостых оборотов и датчик положения заслонки. Первый отвечает за поддержание минимального вращения коленвала, второй — передаёт информацию блоку управления о степени открытия механизма.

После дроссельной заслонки поток попадает во впускной коллектор. Это последняя деталь в схеме на пути подачи воздуха в цилиндры. Делают его из металла (сплава на основе алюминия) или пластика. Коллектор отвечает за формирование горючей смеси, которая в дальнейшем попадает в камеру сгорания. Впрыск горючего осуществляют инжекторы, установленные непосредственно в корпусе детали.

Система подачи воздуха в дизельный двигатель

Компоновка мотора, работающего на солярке, от бензинового практически не отличается. В схеме питания отсутствует дроссельная заслонка, установлен турбокомпрессор и реализован более сложный принцип формирования топливной смеси. В двигатель с дизельной аппаратурой и турбиной воздушный поток попадает через заборник, который представляет собой полный аналог элемента бензинового мотора. Очистка воздушной массы также происходит в фильтре. Однако для силовых агрегатов, устанавливаемых на спецтехнику, предусмотрена многоступенчатая фильтрация. В условиях сильной запылённости используют инерционный предварительный очиститель и другие подобные решения.

Читайте также  Ремонт двигателя шуруповерта своими руками

После фильтра воздушные массы попадают в центробежный нагнетатель. Турбина работает за счёт энергии отработанных газов и предназначена для генерации большего крутящего момента. Поток, проходя через нагнетатель, нагревается. Для его охлаждения предусмотрен промежуточный теплообменник — интеркулер. Элемент позволяет незначительно повысить мощность ДВС по сравнению с базовыми характеристиками.

Последний элемент системы — коллектор. В отличие от бензинового, в дизельном нет дроссельного узла, а воздух беспрепятственно попадает в цилиндры. Генерация крутящего момента регулируется количеством впрыскиваемого топлива. Однако в современных моторах заслонка всё же есть, но выполняет она другую функцию. Совместно с клапаном EGR она способна улучшить экологические показатели мотора на переходных режимах работы. Снижение токсичности выхлопных газов происходит за счёт повторного их использования при формировании горючей смеси.

Система регенерации выхлопных газов позволяет снизить их токсичность, но в то же время существенно сокращает ресурс силового агрегата. Моторы, оснащённые этой технологией, работают в 4-5 раз меньше до капитального ремонта.

Как увеличить подачу воздуха в двигатель

От количества и качества поступающих в мотор воздушных масс зависят его эксплуатационные характеристики. Для генерации большей мощности владельцы авто пытаются увеличить подачу воздуха. Для этого в конструкцию силового агрегата вносят изменения. Установка модернизированной системы питания позволяет получить несколько дополнительных лошадиных сил.

Наиболее простой и бюджетный способ — установка фильтра нулевого сопротивления взамен штатного. Однако этот метод используют на спортивных и специально подготовленных авто. Для стоковых двигателей прирост мощности будет минимален, а расходы на более частую замену фильтрующего элемента существенно возрастут.

Часто повышают крутящий момент за счёт доработки штатной системы подачи воздуха. Способ подразумевает комплексный подход к модернизации. В первую очередь измеряют местные сопротивления движению потока, затем меняют конфигурацию воздухозаборника, корпуса фильтра, впускного патрубка так, чтобы движению воздуха ничего не мешало.

Существенно повысить «резвость» атмосферного мотора позволяет электрический нагнетатель. Монтаж турбины осуществляют во впускной патрубок. В результате улучшается общий процесс смесеобразования, мощность двигателя растет, повышается эластичность во время работы ДВС на разных режимах, автомобиль демонстрирует улучшенные динамические характеристики.

Увеличить поступление воздушных масс позволяет вынос воздухозаборника из подкапотного пространства. «Холодный впуск» обеспечивает снижение температуры в коллекторе, а также незначительное повышение давления во время движения. Однако вынос воздухозаборника сопряжён с риском попадания в него воды, что может привести к гидроудару и поломке двигателя.

Система питания двигателя — сложный компонент, исправность которого обеспечивает нормальное функционирование силового агрегата. Для улучшения динамических характеристик возможен тюнинг отдельных элементов, отвечающих за подачу воздуха в цилиндры.

Система подачи воздуха в дизельный двигатель

Аналогичная система питания воздухом применяется на дизелях СМД-23/24.

Система очистки воздуха. Для очистки всасываемого в цилиндры воздуха на дизелях СМД-31 и СМД-23/24 предусмотрена трехступенчатая система. Исключение составляют дизели СМД-23.02 и СМД-24.02 корнеуборочных машин, где применена двухступенчатая система очистки воздуха.

В трехступенчатую систему очистки входят вращающийся воздухозаборник, инерционный предочиститель и воздухоочиститель.

Вращающийся воздухозаборник установлен на входном патрубке инерционного предочистителя и крепится стяжным хомутом. Он представляет собой цилиндрическую сетку, к одному краю которой приварена крышка, в другой завальцована крыльчатка, предохраняющая от попадания пожнивных масс через зазор между сеткой и поддоном. К фланцу болтами прикреплена крышка с сеткой. Фланец установлен на оси, вращающейся в подшипниках. На нижней части оси закреплена турбина. Для смазывания подшипников применяется тугоплавкая смазка.

Инерционный предочиститель закреплен на капоте комбайна и соединяется с входным патрубком воздухоочистителя с помощью резинового компенсатора и стяжных хомутов. Инерционный предочиститель с эжекционным удалением отсепарированной пыли состоит из цилиндрического корпуса, внутри которого приварены завихрительб и отражатель.

Клапан эжектора закреплен на капоте комбайна и с помощью шлангов и стяжных хомутов подсоединен к отсосной трубке эжектора и отсосной трубке инерционного предочистителя. Клапан эжектора состоит из цилиндрического корпуса, внутри которого находится клапан. На неработающем дизеле клапан закрыт. При работе дизеля в результате разрежения со стороны эжектора и давления воздуха со стороны инерционного предочистителя клапан открыт. В случае снижения давления на всасывании клапан закрывается, предохраняя воздухоочиститель от загрязнения выпускными газами.

Воздухоочиститель закреплен на капоте комбайна и соединен с турбокомпрессором через впускную трубу с помощью компенсатора, шланга и стяжных хомутов. Воздухоочиститель представляет собой сварной корпус, в котором на шпильках установлены и закреплены гайками-барашками 8 две секции фильтров-патронов. На дизелях СМД-23/24 одна секция. Каждая секция состоит из основного и предохранительного фильтров-патронов.

Основной фильтр-патрон состоит из наружной и внутренней сеток, бумажной фильтрующей шторы, находящейся внутри сеток, и донышек, скрепленных герметично эпоксидной смолой. Конструкция предохранительного патрона аналогична.

Очистка воздуха происходит следующим образом.

Воздух под действием разрежения, создаваемого турбокомпрессором, через сетку воздухозаборника направляется в трубу поступая на лопатки воздушной турбины, приводит во вращение вал. Через фланец вращение передается сетке. С поверхности заборной сетки частицы пожнивной массы и пыли сбрасываются центробежной силой. Сетка самоочищается.

Из воздухозаборника воздух по входному патрубку попадает внутрь корпуса инерционного предочистителя. Пройдя через завихритель, воздух приобретает вращательное движение. Частицы пыли под действием центробежной силы сбрасываются к стенке корпуса предочистителя и через зазор между стенкой корпуса и отражателем опускаются на дно корпуса. Из корпуса пыль по отсосной трубке (см. рис. 37), соединенной через обратный клапан с трубкой эжектора, уносится вместе с отработавшими газами в атмосферу. Предварительно очищенный воздух через патрубок поступает в воздухоочиститель. Проходя последовательно через фильтры-патроны (основной и предохранительный), воздух окончательно очищается от пыли. По выходному патрубку и впускной трубеон поступает в турбокомпрессор.

На дизелях СМД-23.02 и СМД-24.02 предусмотрена двухступенчатая очистка воздуха – моноциклон с удалением пыли через выбросные щели и воздухоочиститель.

Воздухоочиститель этих дизелей состоит из корпуса, внутри которого с помощью шпильки и гаек с шайбами закреплены два фильтра-патрона: основной и предохранительный.

Фильтры-патроны V-типоразмера или всех дизелей типов СМД-31 и СМД-23, СМД-24 унифицированы: основной – 60-12029.00, предохранительный – 60-12028.00.

Турбокомпрессор. На дизелях СМД-31 и СМД-23/24 установлен турбокомпрессор, использующий энергию выпускных газов для наддува воздуха в цилиндры. Различные модификации этих турбокомпрессоров имеют разные габариты, отличаются конструкцией отдельных элементов и поэтому не взаимозаменяемы.

На рисунке 45 приведена конструкция турбокомпрессора ТКР8,5С-1. Конструкция других модификаций аналогична. Принцип действия турбокомпрессора следующий. Горячие газы из цилиндров под давлением поступают по выпускному коллектору в камеру газовой турбины, а оттуда направляются на лопатки колеса турбины. Расширяясь, газы вращают колеса турбины с валом, на другом конце которого находится колесо турбокомпрессора. Из турбины отработавшие газы выходят в атмосферу.

Центробежный компрессор засасывает воздух через воздухоочис титель, сжимает его и подает под давлением через воздухо-воздушный радиатор и впускной коллектор в цилиндры дизеля.

Техническое обслуживание системы питания воздухом. Для обеспечения надежной работы системы питания воздухом в процессе эксплуатации необходимо соблюдать следующие правила:
– не допускать попадания воды в воздухоочиститель при мойке дизеля;
– для предохранения фильтров-патронов от загрязнения продуктами сгорания работа дизеля в закрытом помещении запрещается;
– не допускать работу дизеля с загрязненными выше нормы фильтрами-патронами из-за увеличения расхода картерного масла и выхода из строя масляного уплотнения турбокомпрессора;
– при проведении сварочных работ на деталях воздухоочистителя удалять из корпуса фильтры-патроны, так как искры и раскаленные капли металла могут привести к их возгоранию;
– не допускать вращения коленчатого вала дизеля в противоположную сторону, так как это приводит к замасливанию и засорению продуктами сгорания фильтров-патронов;
– не допускать разгерметизации системы питания воздухом до турбокомпрессора и после него, так как это может привести в первом случае к подсосу неочищенного воздуха, во втором – к снижению мощности дизеля, обильному дымлению из-за утечки воздуха;
– своевременно проводить техническое обслуживание составных частей системы питания воздухом.

Техническое обслуживание трех- и двухступенчатой систем питания воздухом дизелей СМД-31 и СМД-23/24 заключается в следующем:
– через каждые 60 моточасов (при ТО-1) очистить щели колпака и защитной сетки моноциклона, обдуть сжатым воздухом или промыть основной фильтр-патрон воздухоочистителя;
– через каждые 240 моточасов обдуть или промыть предохранительный фильтр-патрон воздухоочистителя и смазать подшипники вращающегося воздухозаборника (дозаправить 8…10 г смазки Литол-24);
– через каждые 480 моточасов заменить основной фильтр-патрон воздухоочистителя. Проведение этой работы рекомендуется при подготовке к уборочному сезону.

Последовательность операции по обслуживанию воздухоочистителя (на примере дизеля СМД-31) следующая:
– отверните гайки-барашки и снимите крышки обеих секций;
– отверните гайки-барашки и выньте из корпуса основные фильтры-патроны;
– продуйте основные фильтры-патроны сжатым воздухом сначала внутри, а затем снаружи до полного удаления пыли.

Во избежание прорыва бумажной шторы давление воздуха должно быть не более 0,2…0,3 МПа (2…3 кгс/см2). При этом струю воздуха следует направлять под углом к боковой поверхности фильтра-патрона и регулировать давление воздуха изменением расстояния от наконечника шланга до поверхности фильтра-патрона. При отсутствии сжатого воздуха, а также в случае замасливания или загрязнения продуктами сгорания основные фильтры-патроны необходимо погрузить на 2 ч в моющий раствор, после чего интенсивно прополоскать в воде (температура 35…45 °С) и просушить в течение 24 ч. Промывать фильтры-патроны следует также в том случае, когда продувкой сжатым воздухом они не восстанавливаются. Моющий раствор приготавливают из мыльной пасты ОП-7 или ОП-Ю (ГОСТ 8433-81) и воды, нагретой до 40…45°С (20 г пасты на 1 л воды). Допускается использовать для промывки фильтров-патронов стиральный порошок или пасту, а также хозяйственное мыло, измельченное и растворенное в теплой воде (100 г мыла на 10 л воды).

Читайте также  Двигатель от стиральной машины как подключить с регулировкой?

Мыльный раствор необходимо отфильтровать. Запрещается продувать основные фильтры-патроны выпускными газами или промывать в дизельном топливе;
отверните гайки-барашки и выньте из корпуса предохранительные фильтры-патроны.

Обслуживание фильтров-патронов следует проводить осторожно, чтобы не повредить их.

Обслуживание предохранительных фильтров-патронов с бумажной фильтрующей шторой аналогично основным фильтрам-патронам.

Воздухоочиститель собирают в последовательности, обратной разборке. При этом проверяют состояние уплотнительных колец. Основные фильтры-патроны и фильтрующие элементы предохранительных фильтров-патронов в случае повреждения заменяют из комплекта ЗИП.

Убедитесь в правильности установки фильтров-патронов в корпусе и надежно затяните гайки-барашки. Во избежание повреждения фильтров-патронов не производите чрезмерную затяжку гаек.

В случае повышения расхода картерного масла из-за износа или залегания уплотнительных колец турбокомпрессора последний необходимо снять с дизеля для полной разборки.

Турбокомпрессор разбирают в следующем порядке:
– отверните две гайки и отсоедините от турбокомпрессора трубку слива масла;
-отверните гайки, снимите шайбы и отсоедините корпус компрессора от среднего корпуса;
– отогните буртики замковых шайб, отверните гайки, снимите замковые шайбы, планки и отсоедините корпус турбины от среднего корпуса. Во избежание повреждения лопаток при разборке и сборке турбокомпрессора не ставьте средний корпус в сборе с ротором на колесо турбины или компрессора;
– отверните специальную гайку, придерживая вал ключом за грани на хвостовике колеса турбины, и снимите колесо компрессора;
– выньте из среднего корпуса колесо турбины с валом, осторожно постукивая деревянным молотком через проставку по торцу вала со стороны компрессора;
– выньте маслоотражатель из диска уплотнения компрессора; выньте уплотнительные кольца из канавок маслоотражателя и втулки уплотнения.

Турбокомпрессор собирают в такой последовательности:
– очистите деревянным скребком от нагара, промойте в чистом дизельном топливе и продуйте сжатым воздухом все детали турбокомпрессора;
– установите новые уплотнительные кольца в канавки втулки уплотнения, после чего проверните кольца в канавках так, чтобы замки колец были обращены в противоположные стороны;
– смажьте вал ротора чистым моторным маслом и установите ротор в средний корпус турбокомпрессора;
– установите на маслоотражатель уплотнительное кольцо;
– затем маслоотражатель – в диск уплотнения;
– установите колесо компрессора на вал ротора, совместив метки на валу и колесе компрессора;
– закрепите колесо компрессора на валу ротора специальной гайкой, затянув ее до совпадения меток на гайке и валу ротора.

После сборки среднего корпуса турбокомпрессора проверьте легкость и плавность вращения ротора в подшипнике, а также осевое перемещение ротора, которое должно быть в пределах 0,16…0,25 мм.

Дальнейшую сборку турбокомпрессора производите в порядке, обратном разборке.

Конструкция и работа системы питания дизеля воздухом

Система питания воздухом служит для забора окружающего воздуха, его очистки от пыли и распределения по цилиндрам двигателя.

Система питания воздухом (рис. 7) включает воздушный фильтр и впускной трубопровод. Она может быть с турбонаддувом или без турбонаддува.

Воздух поступает через сетку колпака 5 и трубу 4 воздухозаборника в воздушный фильтр 1. В фильтре воздух проходит через инерционную решетку 3 и резко изменяет направление движения. Сначала воздух освобождается от крупных частиц пыли, которые под действием инерции и вакуума выбрасываются через эжектор 6, установленный в выпускной трубе глушителя, в окружающий воздух. Более мелкие частицы пыли задерживаются в картонном фильтрующем элементе 2. Очищенный воздух по впускному трубопроводу подается в цилиндры 7 двигателя.

Воздушный фильтр (рис. 8) состоит из корпуса 3, крышки 1 и сменного фильтрующего элемента 2, состоящего из двух перфорированных стальных кожухов и гофрированного картона между ними. Патрубок 7 предназначен для отсоса пыли из корпуса фильтра.

Воздух поступает в фильтр через патрубок 5, очищается в нем и выходит через патрубок 6.

Наддув представляет собой подачу воздуха в цилиндры двигателя при такте впуска под давлением, создаваемым компрессором. При наддуве увеличивается количество воздуха, поступающего в цилиндры двигателя, количество сжигаемого топлива и повышается на 20. 40 % мощность двигателя.

Рис. 8. Воздушный фильтр:

1 — крышка; 2 — фильтрующий элемент; 3 — корпус; 4 — диффузор; 5, 6, 7 — патрубки

В дизелях обычно применяется газотурбинный наддув (рис. 9) турбокомпрессором. При работе двигателя воздух в цилиндры 1 нагнетается под давлением центробежным компрессором 6, рабочее колесо которого приводится во вращение турбиной 5.

Рис. 9. Схема наддува дизеля воздухом:

1 — цилиндр двигателя; 2 — мембрана; 3 — пружина; 4 — клапан; 5 — турбина; 6 — компрессор

Система выпуска отработавших газов

Система выпуска служит для отвода газов из цилиндров двигателя и снижения шума. Одновременно система выпуска обеспечивает отсос пыли из воздушного фильтра.

Отработавшие газы из выпускных трубопроводов двигателя поступают в приемные трубы 2 и 3 глушителя (рис. 10) и далее через гибкий металлический рукав 6 в глушитель 7. Из глушителя газы через выпускную трубу 8 и эжектор 10 выбрасываются в окружающий воздух. Через патрубок 9 производится отсос пыли из воздушного фильтра в эжектор.

В системе выпуска отработавших газов устанавливается вспомогательный (моторный) тормоз-замедлитель 4.

Рис. 10. Схема системы выпуска отработавших газов дизеля:

1—уплотнитель; 2,3,8 — трубы; 4 — тормоз-замедлитель; 5— пневмоцилиндр; 6 — рукав; 7 — глушитель; 9 — патрубок; 10 — эжектор

Рабочее колесо турбины, установленное на одном валу с рабочим колесом компрессора, приводится во вращение отработавшими газами до их поступления в глушитель. Для ограничения давления воздуха при наддуве предназначен перепускной клапан 4. При достижении требуемого давления (обычно 0,2 МПа) воздух давит на мембрану 2, клапан открывается и перепускает часть отработавших газов мимо турбины 5.

На V-образных дизелях для турбонаддува устанавливают от одного до двух турбокомпрессоров. При двух турбокомпрессорах каждый из них обслуживает свой ряд цилиндров двигателя.

Система питания дизельного двигателя

Система питания современного двигателя внутреннего сгорания — это совокупность электронных и механических узлов, функция которых заключается не только в стабильной подаче топлива к форсункам, но и делать это под давлением. Если топливо нагнетается под определенным давлением, то оно распыляется и не капает в одну точку, поэтому называется дозированный многоточечный впрыск в рабочие камеры сгорания цилиндров.

Особенности дизельного ДВС

По составу дизельное топливо сильно отличается от всех марок бензина. В диз топливе содержится керосин и газойлевые соляровые фракции. При получении солярки, из нефти сначала отделяют бензин.

Качество бензина зависит от октанового числа, а солярка зависит от значения цетаного числа. На автозаправочных станция сегодня продают дизельное топливо в ценатом от 45 до 50. Для новых дизельных двигателей требуется солярка с высоким цетаном.

Краткий рабочий цикл топливной системы дизельного агрегата:

  1. Топливо очищается от примесей.
  2. Попадает в топливный насос высокого давления.
  3. ТНВД сжимает топливо и оно под давлением проходит через микроотверстие в форсунке и распыляется на мелкие частички.
  4. При движении поршня вниз, открывается всасывающий клапан и воздух поступает в камеру цилиндра и моментально нагревается от сжатия (давление сжатия от 3 до 5 Мпа) при движении поршня вверх.
  5. Распыленное топливо смешивается с горячим воздухом, это от 700 до 900 градусов, и самовозгорается.

Кто не знает, основное отличие дизельного двигателя от бензинового не только в топливе, но в система поджига топлива. Если бензин поджигается за счет образования искры свечи, то солярка поджигается от сильного сжатия и высокой температуры.

Классификация дизельного топлива по температуре застывания:

  1. летнее дизельного горючее;
  2. зимнее;
  3. арктическое.

Так же, эти сорта солярки немного отличаются по цвету. Опытные шофера определяют по цвету. Вязкость и плотность дизель топлива намного больше, чем у бензина. Также, солярка обладает смазывающим эффектом, поэтому оно не является обезжиривающей жидкостью, как бензин.

Работа системы питания дизельного ДВС

Функции системы питания дизеля следующие:

  • в зависимости от нагрузки на двигатель и режима работы ДВС нагнетать солярку в строго определенном количестве;
  • распылять топливо в заданный промежуток времени с нужным давлением;
  • максимально распылять диз топливо по всей рабочей камере сгорания цилиндра;
  • до того, как топливо поступит в ТНВД и форсунки, топливо проходит фильтрацию.

Устройство системы питания дизеля

Из чего состоит топливная дизельная система:

  1. Топливный бак.
  2. Фильтр грубой очистки топлива (ГОТ).
  3. Фильтр тонкой очистки топлива (ТОТ).
  4. Насос для подкачивания дизтоплива.
  5. Топливный насос высокого давления (ТНВД).
  6. Инжекторные форсунки.
  7. Магистраль высокого давления.
  8. Трубопровод низкого давления.
  9. Фильтр очистки воздуха.
Читайте также  Масло для двухтактных двигателей бензопилы

Эти элементы есть во всех модификациях дизельных агрегатов. Некоторые моторы оснащаются доп элементами: электрический насос, фильтры сажевые, глушители и т.д.

Система питания дизельного двигателя состоит из двух основных частей:

  • дизельное устройство для подачи топлива;
  • дизельное устройство для подачи воздуха.

Устройство для подачи топлива может быть в едином корпусе, а может быть раздельным. Современное устройство выполнено в раздельном типе, то есть насос ТНВД и форсунки расположены в разных корпусах. Солярка нагнетается по магистралям низкого, затем высокого давления. Все, что до ТНВД, это трубопроводы низкого давления. После ТНВД начинается сжатие топлива.

Система питания дизельного ДВС оснащается двумя насосами:

  • насос высокого давления;
  • насос для подкачки топлива.

Насос для подкачки начинает качать топливо из бака, прогоняет его через фильтры грубой и тонкой очистки и поставляет его в топливный насос высокого давления.

Насос ТНВД подает топливо под давлением в инжекторные форсунки в порядке, характерном для данного дизельного мотора. В устройстве ТНВД есть много одинаковых секций.

Нераздельная система подачи топлива

Система питания дизельного двигателя нераздельного типа, то есть ТНВД и форсунки расположены в одном корпусе, устанавливается в двухтактные дизельные моторы. Устройство, в котором есть и насос ТНВД и форсунка называется насос-форсункой.

Такие двигатели с нераздельной подачей топлива не распространились массово. Они часто ломаются. Хотя конструкция и проще, отсутствует магистраль высокого давления. Моторы работают с высоким уровнем шума.

Раздельная система подачи топлива

В таких двигателях форсунки устанавливают в головке блока цилиндров. Форсунки должны качественно распылять топливо по рабочим камерам сгорания цилиндров, поэтому частой проблемой плохой работы дизеля является засорение форсунок.

Насос подкачки топлива нагнетает много жидкости в ТНВД, насос высокого давления берет нужный ему объем, а остальное оттекает по дренажным линиям обратно в топливный бак.

Классификация дизельных форсунок по конструкции:

  1. закрытая форсунка, то есть сопло у нее закрывается специальное запорной иглой;
  2. открытая форсунка.

В четырех тактных двигателях устанавливаются форсунки закрытого вида. Внутреннее пространство форсунки сообщается с камерой сгорания только во время подачи топлива.

Главный элемент форсунок — это распылитель. Распылитель может иметь только одно отверстие или несколько. Впрыск топлива через эти отверстия создают факел в цилиндре. От пропускной способности, количества отверстий зависит форма и расположение факела.

Схема питания турбодизеля

Чтобы увеличить мощность дизельного аппарата, устанавливают турбину. Конструкция топливной системы дизельного двигателя не изменяется, если мотор с турбонаддувом. Меняется схема и вариант подачи топлива в мотор от схемы атмосферного двигателя.

Турбированный двигатель получается путем установки турбокомпрессора. В дизельном моторе турбина работает на отработавших газах. Сначала турбокомпрессор сжимает воздух, охлаждает его и подает в рабочую камеру сгорания цилиндров дизельного силового агрегата. Воздух нагнетается под давлением 0,15-0,2 МПа (Мега Паскаль).

Классификация турбонаддува по давлению:

  • до 0,15 Мпа;
  • 0,2 МПа — турбокомпрессор средней мощности;
  • > 0,2 МПа.

Как в бензиновых, так и дизельных двигатель турбина служит для дополнительной подачи воздуха в камеры сгорания. Чем больше воздуха, тем больше и качественнее догорает топливо. Мощность двигателя с турбиной увеличивается на 30%.

Минус турбированных моторов в том, что такие агрегаты работают в более трудных условиях: повышается температура; детали, особенно цилиндро-поршневой группы (ЦПГ), кривошипно-шатунного механизма (КШМ), газораспределительного механизма (ГРМ) испытывают больше давления и, саму турбину обычно надо менять через 100 000 км пробега.

Видео

В этом видео подробно рассказывается о системе подачи топлива в дизель мотор.

Топливная система дизельных двигателей.

Система питания двигателя КАМАЗ.

О системе подачи воздуха

Впускная система (другое наименование – система подачи воздуха) предназначена для впуска в двигатель необходимого количества воздуха и образования топливно-воздушной смеси. Термин «впускная система» появился с развитием конструкции двигателей внутреннего сгорания, особенно с появлением системы непосредственного впрыска топлива. Оборудование для питания двигателя воздухом перестало быть просто воздуховодом, а превратилось в отдельную систему.

В своей работе система впуска взаимодействует со многими системами двигателя, в том числе с системой впрыска, системой рециркуляции отработавших газов, системой улавливания паров бензина, вакуумным усилителем тормозов. Взаимодействие перечисленных систем и еще ряда других систем обеспечивает система управления двигателем.

Для улучшения наполнения цилиндров воздухом, повышения мощности в конструкции системы впуска современных бензиновых и дизелных двигателей используется турбонаддув.

Конструкция впускной системы включает воздухозаборник, воздушный фильтр, дроссельную заслонку, впускной коллектор. на отдельных конструкциях двигателей используются впускные заслонки. Все элементы впускной системы соединены патрубками.

Схема впускной системы: 1-воздушный фильтр,2-расходомер воздуха,3-адсорбер,4-запорный клапан системы улавливания паров бензина,5-блок управления дроссельной заслонкой,6-датчик давления во впускном коллекторе,7-клапан управления впускными заслонками,8-вакуумный привод впускных заслонок,9-датчик положения впускной заслонки,10-датчик давления в магистрали вакуумного усилителя тормозов,11-клапан системы рециркуляции отработавших газов,12-блок управления системы управления двигателем.

Воздухозаборник обеспечивает забор воздуха из атмосферы и представляет собой патрубок определенной формы.

Воздушный фильтр служит для очистки воздуха от механических частиц. Фильтрующий элемент изготавливается из специальной бумаги и размещается в отдельном корпусе. Фильтрующий элемент воздушного фильтра является расходным материалом, т.е. имеет ограниченный срок службы. В зависимости от условий эксплуатации автомобиля срок службы фильтрующего элемента может изменяться.

Дроссельная заслонка регулирует величину поступающего воздуха в соответствии с величиной впрыскиваемого топлива. На современных двигателях дроссельная заслонка приводится в действие с помощью электродвигателя и не имеет механической связи с педалью газа.

Впускной коллектор распределяет поток воздуха по цилиндрам двигателя и придает ему необходимое движение. Разряжение, возникаемое во впускном коллекторе используется в работе вакуумного усилителя тормозов, а также для привода впускных заслонок.

На двигателях с непосредственным впрыском топлива в дополнение к дроссельной заслонке устанавливаются впускные заслонки. Они обеспечивают процесс смесеобразования за счет разделения воздуха на два впускных канала. Один канал перекрывает заслонка, через другой – воздух проходит безпрепятственно. Впускные заслонки установлены на общем валу, который поворачивается с помощью вакуумного или электрического привода.

Работу впускной системы обеспечивает система управления двигателем. Конструктивные элементы системы управления двигателем, которые используются в работе системы впуска, можно разделить на три группы: входные датчики, блок управления иисполнительные устройства.

К примеру, впускная система двигателя с непосредственным впрыском топлива имеет следующие входные датчики: расходомер воздуха, температуры воздуха на впуске, положения дроссельной заслонки, давления во впускном коллекторе, положения впускной заслонки, положения клапана рециркуляции, давления в магистрали вакуумного усилителя тормозов.

Расходомер воздуха и датчик температуры воздуха на впуске служат для определения нагрузки на двигатель. На некоторых моделях двигателей расходомер воздуха не устанавливается. Его функции выполняет датчик давления во впускном коллекторе. При совместной установке расходомер воздуха и датчик давления во впускном коллекторе дублируют друг друга. Датчик давления во впускном коллекторе также используется в работе системы рециркуляции отработавших газов для расчета количества перепускаемых газов. Величина нагрузки двигателя определяется с помощью датчика температуры воздуха на впуске и дополнительного датчика атмосферного давления. Остальные датчики обеспечивают работу соответствующих систем.

Работой впускной системы управляют следующие исполнительные устройства:

  • блок управления дроссельной заслонкой;
  • электродвигатель привода впускных заслонок или клапан управления вакуумным приводом заслонок (на двигателе с непосредственным впрыском топлива);
  • запорный клапан системы улавливания паров бензина;
  • электромагнитный клапан системы рециркуляции отработавших газов.

Исполнительные устройства активирует блок управления двигателем.

Принцип работы впускной системы

Работа впускной системы основана на разности давлений в цилиндре двигателя и атмосфере, возникающей на такте впуска. Объем поступающего воздуха при этом пропорционален объему цилиндра. Величина поступающего воздуха регулируется положением дроссельной заслонки в зависмости от режима работы двигателя.

На двигателях с непосредственным впрыском топлива в дополнение к дроссельной заслонке работают впускные заслонки. Совместная работа дроссельной и впускных заслонок обеспечивает несколько видов смесеобразования:

  • послойное смесеобразование;
  • бедное гомогенное смесеобразование;
  • стехиометрическое гомогенное смесеобразование.

Послойное смесеобразование используется при работе двигателя на малых и средних оборотах и нагрузках. При послойном смесеобразовании дроссельная заслонка большую часть времени открыта полностью. Заслонка прикрывается только для обеспечения разряжения, необходимого в работе системы улавливания паров бензина (продувка адсорбера), системы рециркуляции отработавших газов (перепуск отработавших газов во впускной коллектор) и вакуумного усилителя тормозов (создание необходимого разрежения). Впускные заслонки закрыты.

Стехиометрическое (легковоспламеняемое) гомогенное (однородное) смесеобразование применяется при высоких оборотах двигателя и больших нагрузках. Дроссельная заслонка открывается в соответствии с требуемым крутящим моментом. Впускные заслонки открыты.

На бедной гомогенной смеси двигатель работает в промежуточных режимах. Дроссельная заслонка открывается также в соответствии с требуемым крутящим моментом. Впускные заслонки закрыты.

Уважаемый посетитель! Мы не можем ответить лично каждому, но тем не менее никому не отказываем в консультации.
Для того, чтобы Вы могли самостоятельно (или с помощью ближайшего автосервиса) устранить неисправности дизеля, мы разработали ОнлайнДиагностику. Это интерактивное руководство, которое содержит все известные причины неисправностей дизельных двигателей и указывает пути достижения правильной работы конкретного двигателя.

Приглашаем вас воспользоваться ОнлайнДиагностикой прямо сейчас!