Однофазные и конденсаторные асинхронные двигатели
Конденсаторные двигатели — устройство, принцип действия, применение
В этой статье поговорим о конденсаторных двигателях, которые по сути являются обычными асинхронными, отличающимися лишь способом подключения к сети. Затронем тему подбора конденсаторов, разберем причины необходимости точного подбора емкости. Отметим основные формулы, которые помогут в приблизительной оценке требуемой емкости.
Конденсаторным двигателем называется асинхронный двигатель, в цепь статора которого включена дополнительная емкость, с целью создать сдвиг фаз тока в обмотках статора. Зачастую это касается однофазных цепей при использовании трехфазных или двухфазных асинхронных двигателей.
Обмотки статора асинхронного двигателя физически сдвинуты друг относительно друга, и одна из них включается непосредственно в сеть, в то время как вторая, либо вторая и третья подключаются к сети через конденсатор. Емкость конденсатора подбирается так, чтобы сдвиг фаз токов между обмотками получился бы равным или хотя бы близким к 90°, тогда ротору будет обеспечен максимальный вращающий момент.
При этом модули магнитной индукции обмоток должны получиться одинаковыми, чтобы магнитные поля обмоток статора оказались бы сдвинуты относительно друг друга так, чтобы суммарное поле вращалось по кругу, а не по эллипсу, увлекая за собой ротор с наибольшей эффективностью.
Очевидно, ток и его фаза в подключенной через конденсатор обмотке связаны как с емкостью конденсатора, так и с эффективным импедансом обмотки, который в свою очередь зависит от скорости вращения ротора.
При старте двигателя импеданс обмотки определяется лишь ее индуктивностью и активным сопротивлением, поэтому он относительно мал в момент пуска, и здесь нужен конденсатор большей емкости для обеспечения оптимального пуска.
Когда же ротор разгонится до номинальных оборотов, магнитное поле ротора станет индуцировать в обмотках статора ЭДС, которая будет направлена против питающего обмотку напряжения — эффективное сопротивление обмотки теперь растет, и требуемая емкость снижается.
При оптимально подобранной емкости в каждом режиме (пусковой режим, рабочий режим) магнитное поле будет круговым, и здесь имеет значение как скорость вращения ротора, так и напряжение, и число витков обмотки, и подключенная в текущий момент емкость. Если оптимальное значение какого-нибудь параметра нарушено, поле становится эллиптическим, характеристики двигателя соответственно падают.
Для двигателей разного назначения схемы подключения емкостей разные. Когда требуется значительный пусковой момент, применяют конденсатор большей емкости, чтобы обеспечить оптимальные ток и фазу именно в момент пуска. Если пусковой момент не особо важен, то внимание уделяют только созданию оптимальных условий рабочего режима, при номинальной скорости вращения, и емкости подбирается для номинальных оборотов.
Довольно часто для качественного пуска применяют пусковой конденсатор, который на время запуска подключается параллельно рабочему конденсатору относительно малой емкости, чтобы вращающееся магнитное поле и при пуске было круговым, затем пусковой конденсатор отключают, и двигатель продолжает работу только с рабочим конденсатором. В особых случаях прибегают к набору конденсаторов с возможностью переключения для разных нагрузок.
Если пусковой конденсатор случайно не будет отключен после выхода двигателя на номинальные обороты, сдвиг фаз в обмотках уменьшится, не будет уже оптимальным, и магнитное поле статора станет эллиптическим, что ухудшит рабочие характеристики двигателя. Крайне важно правильно подобрать пусковую и рабочую емкости, чтобы двигатель работал эффективно.
На рисунке показаны типичные схемы включения конденсаторных двигателей, применяемые на практике. Например рассмотрим двухфазный двигатель с короткозамкнутым ротором, статор которого имеет две обмотки для питания в двух фазах А и В.
В цепь дополнительной фазы статора включен конденсатор С, поэтому токи IA и IВ текут в обеих обмотках статора в двух фазах. Наличием емкости добиваются фазового сдвига токов IA и IВ в 90°.
Векторная диаграмма показывает, что суммарный ток сети образован геометрической суммой токов обеих фаз IA и IВ. Подбором емкости С добиваются такого сочетания с индуктивностями обмоток, чтобы фазовый сдвиг токов получился именно 90°.
Ток IA запаздывает относительно приложенного сетевого напряжения UА на угол φА, а ток IВ — на угол φВ относительно напряжения UB, приложенного к зажимам второй обмотки в текущий момент. Угол между напряжением сети и напряжением, приложенным ко второй обмотке составляет 90°. Напряжение на конденсаторе UС образует угол 90° с током IВ.
По диаграмме видно, что полная компенсация фазового сдвига при φ = 0 достигается тогда, когда реактивная мощность потребляемая двигателем из сети равна реактивной мощности конденсатора С. Рядом на рисунке показаны типичные схемы включения трехфазных двигателей с конденсаторами в цепях обмоток статоров.
Промышленностью сегодня выпускаются конденсаторные двигатели на базе двухфазных. Трехфазные легко модифицируются вручную для питания от однофазной сети. Встречаются и мелкосерийные трехфазные модификации, уже оптимизированные при помощи конденсатора под однофазную сеть.
Часто такие решения можно встретить в бытовых приборах, таких как посудомоечные машины и комнатные вентиляторы. Промышленные циркуляционные насосы, воздуходувки и дымососы также часто используют в своей работе конденсаторные двигатели. Если требуется включить трехфазный двигатель в однофазную сеть — применяют фазосдвигающий конденсатор, то есть опять же переделывают двигатель в конденсаторный.
Для приблизительного расчета емкости конденсатора применяют известные формулы, в которые достаточно подставить напряжение питания и рабочий ток двигателя, и легко вычислить необходимую емкость для соединения обмоток звездой или треугольником.
Для нахождения рабочего тока двигателя достаточно прочитать данные на его шильдике (мощность, кпд, косинус фи), и так же подставить в формулу. В качестве пускового конденсатора принято устанавливать конденсатор в два раза большей емкости, чем рабочий.
К преимуществам конденсаторных двигателей, по сути — асинхронных, относится главным образом одно — возможность включить трехфазный двигатель в однофазную сеть. Из недостатков — необходимость оптимальной емкости под конкретную нагрузку, и недопустимость питания от инверторов с модифицированной синусоидой.
Надеемся, что эта статья была для вас полезной, и теперь вы понимаете, для чего асинхронным двигателям конденсаторы, и как подбирать их емкость.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Не пропустите обновления, подпишитесь на наши соцсети:
Однофазные и конденсаторные асинхронные двигатели
Устройство однофазного асинхронного двигателя аналогично трехфазному, но на статоре уложена однофазная обмотка, при включении которой МДС статора создает не вращающийся, а пульсирующий магнитный поток. Ось этого магнитного потока неподвижна в пространстве, амплитуда . Пульсирующий магнитный поток можно представить в виде суммы двух вращающихся в противоположные стороны магнитных потоков и , амплитуда каждого из которых равна . Этих потоки наводят ЭДС взаимной индукции прямой и обратной последовательности, что вызывает появление соответствующих токов в замкнутой обмотке ротора. Взаимодействие этих токов с основным магнитным потоком создает вращающие моменты прямой и обратной последовательностей, рисунок. Результирующий электромагнитный момент равен сумме этих моментов:
.
При пуске однофазного двигателя и моменты прямой и обратной последовательностей равны между собой , поэтому результирующий электромагнитный момент равен нулю. Поэтому однофазный двигатель не может самостоятельно прийти во вращение при подключении его к сети.
Для создания не нулевого пускового момента необходимо образование вращающегося магнитного поля. Для этого на статоре помимо рабочей применяется пусковая обмотка. В цепь пусковой обмотки включают фазосмещающих элемент (активное сопротивление или емкость). При достижении номинальной частоты вращения пусковую обмотку отключают.
Рис. Механическая характеристика однофазного асинхронного двигателя. Схема однофазного асинхронного двигателя с пусковой обмоткой: ФЭ – фазосдвигающий элемент; A и B – рабочая и пусковая обмотки.
Асинхронный конденсаторный двигатель имеет на статоре две обмотки, занимающие одинаковое число пазов и сдвинутые в пространстве относительно друг друга на 90 электрических градусов. Главную обмотку включают непосредственно в однофазную сеть, вспомогательную – через рабочий конденсатор . В отличие от однофазного двигателя вспомогательная обмотка после пуска не отключается, при этом емкость создает фазовый сдвиг между токами главной и вспомогательной обмоток.
Конденсаторные двигатели по своим свойствам ближе к трехфазным двигателям, поскольку после окончания пуска они работают с вращающейся МДС, в отличие от однофазных двигателей, работающих с пульсирующей МДС.
Рис. Конденсаторный двигатель с рабочей емкостью, с рабочей и пусковой емкостями. Механические характеристики при рабочей и пусковой емкостях.
Емкость обеспечивает получение кругового вращающегося поля только в расчетном, обычно номинальном, режиме работы двигателя. Если изменится режим (нагрузка), то изменятся и токи в обмотках и фазовый угол между ними. Поле двигателя становится эллиптическим и рабочие свойства двигателя ухудшаются.
Конденсаторный двигатель обладает сравнительно высоким КПД и коэффициентом мощности, но имеют неудовлетворительные пусковые свойства. Пусковой момент обычно не превышает . Для повышения пускового момента параллельно емкости на время пуска включают пусковую емкость .
Трехфазный асинхронный двигатель может быть использован для работы от однофазной сети. Такой двигатель включают как конденсаторный по одной из схем рисунка.
Рис. Схемы соединения обмотки статора трехфазного асинхронного двигателя при включении в однофазную сеть.
Однофазные и конденсаторные асинхронные двигатели
ГЛАВА 16
§16.1. Принцип действия и пуск однофазного асинхронного двигателя
По своему устройству однофазный асинхронный двигатель аналогичен трехфазному и состоит из статора, в пазах которого уложена однофазная обмотка (см. рис. 8.8), и короткозамкнутого ротора. Особенность работы однофазного асинхронного двигателя заключается в том, что при включении однофазной обмотки статора С1—С2 в сеть (рис. 16.1) МДС статора создает не вращающийся, а пульсирующий магнитный поток (см. § 9.4) с амплитудой Фmах, изменяющейся от + Фmах до – Фmах При этом ось магнитного потока остается неподвижной в пространстве.
Для объяснения принципа действия однофазного двигателя пульсирующий поток Фmах разложим на два вращающихся в противоположные стороны потока Фпр и Фобр (рис. 16.2), каждый из которых равен 0,5Фmax и вращается с частотой (об/мин)
Условимся считать поток Фпр вращающийся в направлении вращения ротора, прямым, а поток Фо6р -обратным. Допустим, что ротор двигателя вращается против часовой стрелки, т. е. в направлении потока Фпр.
Частота вращения ротора n2 меньше частоты вращения магнитного поля статора n1, поэтому скольжение ротора относительно вращающегося потока Фпр будет
Обратный поток Фобр вращается противоположно ротору, поэтому частота вращения ротора n2 относительно Фобр — отрицательная. В этом случае скольжение ротора относительно Фобр определится выражением
sобр = (16.2)
Прямое поле наводит в обмотке ротора ЭДС Е2пр, а обратное поле — ЭДС Е2обр. Эти ЭДС создают в обмотке ротора токи I / 2пр и I / 2обр.
Известно, что частота тока в роторе пропорциональна скольжению (f2 = sf1). Так как snp / 2обр намного больше частоты тока I / 2пр. Так, для однофазного двигателя с n1 = 1500 об/мин, n2 = 1450 об/мин и f1 = 50 Гц получим:
snp = (1500 — 1450)/ 1500 = 0,033;
sобр = (1500 +1450)/ 1500 = 1,96;
f2о6р = 1,96 — 50 = 98 Гц.
Рис.16.1 Схема включения однофазного
Индуктивное сопротивление обмотки ротора току I / 2обр во много раз больше ее активного сопротивления (потому что f2обр >> f2пр). Ток I / 2о6р является почти чисто индуктивным, оказывающим сильное размагничивающее действие на обратное поле Фобр. В результате обратное поле и обусловленный им момент Мобр оказываются значительно ослабленными и ротор однофазного двигателя вращается и направлении прямого поля под действием момента
где Мпр — электромагнитный момент, обусловленный прямым полем.
Рис. 16.2. Разложение пульсирующего магнитного потока на два вращающихся
На рис. 16.3 представлен график зависимости вращающего момента М в функции скольжения s = sпр. Этот график получен путем наложения графиков Мпр = f(snp) и Мо6р = f(sобр)- При малых значениях скольжения s, что соответствует работе двигателя в пределах номинальной нагрузки, вращающий момент Мсоздается главным образом моментом Мпр.
При sпр = sобр = 1 моменты Мпр и Мо6р равны, а поэтому пусковой момент однофазного двигателя равен нулю. Следовательно, однофазный асинхронный двигатель не может самостоятельно прийти во вращение при подключении его к сети, а нуждается в первоначальном толчке, так как лишь при s≠ 1 на ротор двигателя действует вращающий момент М = Мпр— Мобр
Рис. 16.3. Механические характе- Рис. 16.4. Схема однофазного ристики однофазного асинхронного асинхронного двигателя с пусковой двигателя обмоткой
Приведенные на рис. 16.3 зависимости моментов показывают, что однофазный асинхронный двигатель не создает пускового момента. Чтобы этот момент появился, необходимо во время пуска двигателя создать в нем вращающееся магнитное поле. С этой целью на статоре двигателя помимо рабочей обмотки Априменяют еще одну обмотку — пусковую В. Эти обмотки располагают на статоре обычно так, чтобы их оси были смещены относительно друг друга на 90 эл. град. Кроме того, токи в обмотках статора и должны быть сдвинуты по фазе относительно друг друга. Для этого в цепь пусковой обмотки включают фазосмещающий элемент (ФЭ), в качестве которого могут быть применены активное сопротивление, индуктивность или ем кость (рис. 16.4). По достижении частотой вращения значения близкого к номинальному, пусковую обмотку Вотключают с по мощью реле. Таким образом, во время пуска двигатель является двухфазным, а во время работы — однофазным.
Для получения вращающегося магнитного поля посредством двух обмоток на статоре, смещенных относительно друг друга на 90 эл. град, необходимо соблюдать следующие условия (рис. 16.5):
а) МДС рабочей и пусковой обмоток и должны быть и равны и сдвинуты в пространстве относительно друг друга на 90 эл. град;
б) токи в обмотках статора и должны быть сдвинуты по фазе относительно друг друга на 90°.
При строгом соблюдении указанных условий вращающееся поле статора является круговым, что соответствует наибольшему вращающему моменту. При частичном нарушении какого-либо из условий поле статора становится эллиптическим, содержащим обратную составляющую (см. рис. 9.5, б). Обратная составляющая поля создает тормозной момент и ухудшает пусковые свойства двигателя.
Из векторных диаграмм, приведенных на рис. 16.6, видно, что активное сопротивление и индуктивность в качестве ФЭ не обеспечивают получения фазового сдвига между токами в 90°. Лишь только емкость С в качестве ФЭ обеспечивает фазовый сдвиг ψ = 90°. Значение этой емкости выбирают таким, чтобы ток пусковой обмотки в момент пуска (s = 1) опережал по фазе напряжение , на угол φв, дополняющий угол φА до 90°:
Рис. 16.5. Получение вращающегося магнитного
поля двухфазной системой токов
Если при этом обе обмотки создают одинаковые по значению МДС, то в начальный период пуска вращающееся поле окажется круговым и двигатель будет развивать значительный начальный пусковой момент. Однако применение емкости в качестве ФЭ часто ограничивается значительными габаритами конденсаторов, тем более что для получения кругового поля требуются конденсаторы значительной емкости. Например, для однофазного двигателя мощностью 200 Вт необходима емкость 30 мкФ при рабочем напряжении 300—500 В.
Получили распространение однофазные двигатели с активным сопротивлением в качестве ФЭ. При этом повышенное активное сопротивление пусковой обмотки достигается тем, что она выполняется проводом уменьшенного сечения (по сравнению с проводом рабочей обмотки). Так как эта обмотка включена на непродолжительное время (обычно несколько секунд), то такая ее конструкция вполне допустима. Пусковой момент таких двигателей обычно не превышает номинального, но это вполне приемлемо при пуске двигателей при небольшой нагрузке на валу.
Рис. 16.6. Сравнение свойств фазосмещающих элементов:
а— активное сопротивление, б— индуктивность, в— емкость, г— механические характеристики двигателя при различных фазосмещающих элементах; 1 — активное сопротивление; 2— емкость
Применение емкости в качестве ФЭ позволяет получить пусковой момент Мп= (1,6÷2,0) Мном. На рис. 16.6, г приведены механические характеристики однофазного асинхронного двигателя при различных ФЭ. Для большей наглядности значения момента даны в относительных единицах.
Дата добавления: 2015-01-18 ; просмотров: 20 ; Нарушение авторских прав
Однофазный асинхронный двигатель: как устроен и работает
Само название этого электротехнического устройства свидетельствует о том, что электрическая энергия, поступающая на него, преобразуется во вращательное движение ротора. Причем прилагательное «асинхронный» характеризует несовпадение, отставание скоростей вращения якоря от магнитного поля статора.
Слово «однофазный» вызывает неоднозначное определение. Связано это с тем, что термин «фаза» в электрике определяет несколько явлений:
сдвиг, разность углов между векторными величинами;
потенциальный проводник двух, трех или четырехпроводной электрической схемы переменного тока;
одну из обмоток статора или ротора трехфазного двигателя либо генератора.
Поэтому сразу уточним, что однофазным электродвигателем принято называть тот, который работает от двухпроводной сети переменного тока, представленной фазным и нулевым потенциалом. Количество обмоток, вмонтированных в различных конструкциях статоров, на это определение не влияют.
Конструкция электродвигателя
По своему техническому устройству асинхронный двигатель состоит из:
1. статора — статической, неподвижной части, выполненной корпусом с расположенными на нем различными электротехническими элементами;
2. ротора, вращаемого силами электромагнитного поля статора.
Механическое соединение этих двух деталей выполнено за счет подшипников вращения, внутренние кольца которых посажены на подогнанные гнезда вала ротора, а внешние вмонтированы в защитные боковые крышки, закрепляемые на статоре.
Ротор
Его устройство у этих моделей такое же, как у всех асинхронных двигателей: на стальном валу смонтирован магнитопровод из шихтованных пластин на основе мягких сплавов железа. На его внешней поверхности выполнены пазы, в которые вмонтированы стержни обмоток из алюминия или меди, закороченные по концам на замыкающие кольца.
В обмотке ротора протекает электрический ток, индуцируемый магнитным полем статора, а магнитопровод служит для хорошего прохождения создаваемого здесь же магнитного потока.
Отдельные конструкции ротора у однофазных двигателей могут быть выполнены из немагнитных или ферромагнитных материалов в форме цилиндра.
Статор
Конструкция статора также представлена:
Его основное назначение заключается в генерировании неподвижного или вращающегося электромагнитного поля.
Статорная обмотка обычно состоит из двух контуров:
У самых простых конструкций, предназначенных для ручной раскрутки якоря, может быть выполнена всего одна обмотка.
Принцип работы асинхронного однофазного электрического двигателя
С целью упрощения изложения материала представим, что обмотка статора выполнена всего одним витком петли. Ее провода внутри статора разносят по кругу на 180 угловых градусов. По ней проходит переменный синусоидальный ток, имеющий положительные и отрицательные полуволны. Он создает не вращающееся, а пульсирующее магнитное поле.
Как возникают пульсации магнитного поля
Разберем этот процесс на примере протекания положительной полуволны тока в моменты времени t1, t2, t3.
Она проходит по верхней части токопровода по направлению к нам, а по нижней — от нас. В перпендикулярной плоскости, представленной магнитопроводом, вокруг проводника возникают магнитные потоки Ф.
Изменяющиеся по амплитуде токи в рассматриваемые моменты времени создают разные по величине электромагнитные поля Ф1, Ф2, Ф3. Поскольку ток в верхней и нижней половине один и тот же, но виток изогнут, то магнитные потоки каждой части направлены встречно и уничтожают действие друг друга. Определить это можно по правилу буравчика или правой руки.
Как видим, при положительной полуволне вращения магнитного поля не наблюдается, а происходит только его пульсация в верхней и нижней части провода, которая еще и взаимно уравновешивается в магнитопроводе. Этот же процесс происходит при отрицательном участке синусоиды, когда токи изменяют направление на противоположное.
Поскольку вращающееся магнитное поле отсутствует, то и ротор останется неподвижным, ибо нет сил, приложенных к нему для начала вращения.
Как создается вращение ротора в пульсирующем поле
Если придать ротору вращение, хотя бы рукой, то он будет продолжать это движение. Для объяснения этого явления покажем, что суммарный магнитный поток изменяется по частоте синусоиды тока от нуля до максимального значения в каждом полупериоде (с изменением направления на противоположное) и состоит из двух частей, образуемых в верхней и нижней ветвях, как показано на рисунке.
Магнитное пульсирующее поле статора состоит из двух круговых с амплитудой Фмакс/2 и двигающихся в противоположных направлениях с одной частотой.
В этой формуле обозначены:
nпр и nобр частоты вращения магнитного поля статора в прямом и обратном направлениях;
n1 — скорость вращающегося магнитного потока (об/мин);
p — число пар полюсов;
f — частота тока в обмотке статора.
Теперь рукой придадим вращение двигателю в одну сторону, и он сразу подхватит движение за счет возникновения вращающегося момента, вызванного скольжением ротора относительно разных магнитных потоков прямого и обратного направлений.
Примем, что магнитный поток прямого направления совпадает с вращением ротора, а обратный, соответственно, будет противоположен. Если обозначить через n2 частоту вращения якоря в об/мин, то можно записать выражение n2
Например, электродвигатель работает от сети 50 Гц с n1=1500, а n2=1440 оборотов в минуту. Его ротор имеет скольжение относительно магнитного потока прямого направления Sпр=0,04 и частоту тока f2пр=2 Гц. Обратное же скольжение Sобр=1,96, а частота тока f2обр=98 Гц.
На основании закона Ампера при взаимодействии тока I2пр и магнитного поля Фпр появится вращающий момент Мпр.
Здесь величина постоянного коэффициента сМ зависит от конструкции двигателя.
При этом также действует обратный магнитный поток Мобр, который вычисляется по выражению:
В итоге взаимодействия этих двух потоков появится результирующий:
Внимание! При вращении ротора в нем наводятся токи разной частоты, которые создают моменты сил с разными направлениями. Поэтому якорь двигателя будет совершать вращение под действием пульсирующего магнитного поля в ту сторону, с которой он начал вращение.
Во время преодоления однофазным двигателем номинальной нагрузки создается небольшое скольжение с основной долей прямого крутящего момента Мпр. Противодействие тормозного, обратного магнитного поля Мобр сказывается совсем незначительно из-за различия частот токов прямого и обратного направлений.
f2обр обратного тока значительно превышает f2пр, а создаваемое индуктивное сопротивление Х2обр сильно превышает активную составляющую и обеспечивает большое размагничивающее действие обратного магнитного потока Фобр, который в итоге этого уменьшается.
Поскольку коэффициент мощности у двигателя под нагрузкой небольшой, то обратный магнитный поток не может оказать сильное воздействие на вращающийся ротор.
Когда же одна фаза сети подана на двигатель с неподвижным ротором (n2=0), то скольжения, как прямое, так и обратное равны единице, а магнитные поля и силы прямого и обратного потоков уравновешены и вращения не возникает. Поэтому от подачи одной фазы невозможно раскрутить якорь электродвигателя.
Как быстро определить частоту вращения двигателя:
Как создается вращение ротора у однофазного асинхронного двигателя
За всю историю эксплуатации подобных устройств разработаны следующие конструкторские решения:
1. ручная раскрутка вала рукой или шнуром;
2. использование дополнительной обмотки, подключаемой на время запуска за счет омического, емкостного или индуктивного сопротивления;
3. расщепление короткозамкнутым магнитным витком магнитопровода статора.
Первый способ использовался в начальных разработках и не стал применяться в дальнейшем из-за возможных рисков получения травм при запуске, хотя он не требует подключения дополнительных цепочек.
Применение фазосдвигающей обмотки в статоре
Чтобы придать начальное вращение ротору к статорной обмотке дополнительно на момент запуска подключают еще одну вспомогательную, но только сдвинутую по углу на 90 градусов. Ее выполняют более толстым проводом для пропускания бо́льших токов, чем протекающие в рабочей.
Схема подключения такого двигателя показана на рисунке справа.
Здесь для включения применяется кнопка типа ПНВС, которая специально создана для таких двигателей и широко использовалась в работе стиральных машин, выпускаемых при СССР. У этой кнопки сразу включаются 3 контакта таким образом, что два крайних после нажатия и отпускания остаются зафиксированы во включенном состоянии, а средний — кратковременно замыкается, а потом под действием пружины возвращается в исходное положение.
Замкнутые же крайние контакты можно отключить нажатием на соседнюю кнопку «Стоп».
Кроме кнопочного выключателя для отключений дополнительной обмотки в автоматическом режиме используются:
1. центробежные переключатели;
2. дифференциальные или токовые реле;
Для улучшения запуска двигателя под нагрузкой применяются дополнительные элементы в фазосдвигающей обмотке.
Подключение однофазного двигателя с пусковым сопротивлением
В такой схеме к статорной дополнительной обмотке последовательно монтируется омическое сопротивление. При этом намотка витков выполняется биффилярным способом, обеспечивающим коэффициент самоиндукции катушки очень близким к нулю.
За счет выполнения этих двух приемов при прохождении токов по разным обмоткам между ними возникает сдвиг по фазе порядка 30 градусов, чего вполне достаточно. Разность углов создается за счет изменения комплексных сопротивлений в каждой цепи.
При этом методе еще может встречаться пусковая обмотка с заниженной индуктивностью и увеличенным сопротивлением. Для этого применяют намотку с маленьким числом витков провода заниженного поперечного сечения.
Подключение однофазного двигателя с конденсаторным запуском
Емкостной сдвиг токов по фазе позволяет создать кратковременное подключение обмотки с последовательно соединенным конденсатором. Эта цепочка работает только во время выхода двигателя на режим, а затем отключается.
У конденсаторного запуска создается наибольший крутящий момент и более высокий коэффициент мощности, чем при резистивном или индуктивном способе запуска. Он может достигать величины 45÷50% от номинального значения.
В отдельных схемах к цепочке рабочей обмотки, которая постоянно включена, тоже добавляют емкость. За счет этого добиваются отклонения токов в обмотках на угол порядка π/2. При этом в статоре сильно заметен сдвиг максимумов амплитуд, который обеспечивает хороший крутящий момент на валу.
За счет этого технического приема двигатель при пуске способен выработать больше мощности. Однако, такой метод используют только с приводами тяжелого запуска, например, для раскрутки барабана стиральной машины, заполненного бельем с водой.
Конденсаторный запуск позволяет изменять направление вращения якоря. Для этого достаточно сменить полярность подключения пусковой или рабочей обмотки.
Подключение однофазного двигателя с расщепленными полюсами
У асинхронных двигателей с небольшой мощностью порядка 100 Вт используют расщепление магнитного потока статора за счет включения в полюс магнитопровода короткозамкнутого медного витка.
Разрезанный на две части такой полюс создает дополнительное магнитное поле, которое сдвинуто от основного по углу и ослабляет его в месте охваченного витком. За счет этого создается эллиптическое вращающееся поле, образующее момент вращения постоянного направления.
В подобных конструкциях можно встретить магнитные шунты, выполненные стальными пластинками, которые замыкают края наконечников статорных полюсов.
Двигатели подобных конструкций можно встретить в вентиляторных устройствах обдува воздуха. Они не обладают возможностью реверса.
Однофазные и конденсаторные асинхронные двигатели
Принцип действия и пуск однофазного асинхронного двигателя
По своему устройству однофазный асинхронный двигатель аналогичен трехфазному и состоит из статора, в пазах которого уложена однофазная обмотка, и короткозамкнутого ротора. Особенность работы однофазного асинхронного двигателя заключается в том, что при включении однофазной обмотки статора С1 — С2 в сеть (рис.4.22) МДС статора создает не вращающийся, а пульсирующий магнитный поток с амплитудой Фмах, изменяющейся от +Фмах до –Фмах. При этом ось магнитного потока остается неподвижной в пространстве.
Рис.4.22. Схема включения однофазного АД
Для объяснения принципа действия однофазного двигателя пульсирующий поток Фмах разложим на два вращающихся в противоположные стороны потока Фпр и Фобр (рис. 4.23), каждый из которых равен 0,5Фмах и вращается с частотой (об/мин)
Рис.4.23. Разложение пульсирующего магнитного потока на два вращающихся
Условимся считать поток Фпр, вращающийся в направлении вращения ротора, прямым, а поток Фобр — обратным. Допустим, что ротор двигателя вращается против часовой стрелки, т. е. в направлении потока Фпр.
Частота вращения ротора n2 меньше частоты вращения магнитного поля статора n1, поэтому скольжение ротора относительно вращающегося потока Фпр будет
Обратный поток Фобр вращается противоположно ротору, поэтому частота вращения ротора n2 относительно Фобр — отрицательная. В этом случае скольжение ротора относительно Фобр определится выражением
Прямое поле наводит в обмотке ротора ЭДС Е2пр, а обратное поле–ЭДС Е2обр. Эти ЭДС создают в обмотке ротора токи I΄2пр и I΄2обр. Известно, что частота тока в роторе пропорциональна скольжению (f2=sf1) Так как snp
Для получения вращающегося магнитного поля посредством двух обмоток на статоре, смещенных относительно друг друга на 90 эл. град, необходимо соблюдать следующие условия (рис. 4.26):
· МДС рабочей и пусковой обмоток FA и FB должны быть равны и сдвинуты в пространстве относительно друг друга на 90 эл. град;
· токи в обмотках статора IА и IВ должны быть сдвинуты по фазе относительно друг друга на 90°.
Рис. 4.26. Получение вращающегося магнитного поля двухфазной системой токов
При строгом соблюдении указанных условий вращающееся полe статора является круговым, что соответствует наибольшему вращающему моменту. При частичном нарушении какого-либо из
условий поле статора становится эллиптическим, содержащим общую составляющую. Обратная составляющая поля создает тормозной момент и ухудшает пусковые свойства двигателя.
Из векторных диаграмм, приведенных да рис. 4.27, видно, что активное сопротивление и индуктивность в качестве ФЭ не обеспечивают получения фазового сдвига между токами в 90°. Лишь только емкость С в качестве ФЭ обеспечивает фазовый сдвиг Ψ= 90°. Значение этой емкости выбирают таким, чтобы ток пусковой обмотки IВ в момент пуска (s = 1) опережал по фазе напряжение U1 на угол φB, дополняющий угол φA до 90°:
Рис. 4.27. Сравнение свойств фазосмещающих элементов: а — активное сопротивление, б—индуктивность, в — емкость, г—механические характеристики двигателя при различных фазосмещающих элементах; 1 — активное сопротивление; 2 — емкость
Если при этом обе обмотки создают одинаковые по значению ЭДС, то в начальный период пуска вращающееся поле окажется круговым, и двигатель будет развивать значительный начальный пусковой момент. Однако применение емкости в качестве ФЭ часто ограничивается значительными габаритами конденсаторов, тем более что для получения кругового поля требуются конденсаторы значительной емкости. Например, для однофазного двигателя мощностью 200 Вт необходима емкость 30 мкФ при рабочем напряжении 300–500 В.
Получили распространение однофазные двигатели с активным сопротивлением в качестве ФЭ. При этом повышенное активное сопротивление пусковой обмотки достигается тем, что она выполняется проводом уменьшенного сечения (по сравнению с проводом рабочей обмотки). Так как эта обмотка включена на непродолжительное время (обычно несколько секунд), то такая ее конструкция вполне допустима. Пусковой момент таких двигателей обычно не превышает номинального, но это вполне приемлемо при пуске двигателей при небольшой нагрузке на валу.
Применение емкости в качестве ФЭ позволяет получить пусковой момент Мп = (1,6÷2,0)Мном. На рис. 4.27, г приведены механические характеристики однофазного асинхронного двигателя при различных ФЭ. Для большей наглядности значения момента даны в относительных единицах.
Дата добавления: 2018-04-15 ; просмотров: 314 ; Мы поможем в написании вашей работы!
Как подключить однофазный двигатель
Чаще всего к нашим домам, участкам, гаражам подведена однофазная сеть 220 В. Поэтому оборудование и все самоделки делают так, чтобы они работали от этого источника питания. В этой статье рассмотрим, как правильно сделать подключение однофазного двигателя.
Асинхронный или коллекторный: как отличить
Вообще, отличить тип двигателя можно по табличке — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.
Так выглядит новый однофазный конденсаторный двигатель
Как устроены коллекторные движки
Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.
Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона. Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки. Потому и используются подобные двигатели в большей части бытовой и строительной техники.
Строение коллекторного двигателя
Недостатки коллекторных двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д.. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.
Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.
Асинхронные
Асинхронный двигатель имеет статор и ротор, может быть одно и трёхфазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.
Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.
Строение асинхронного двигателя
Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.
В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная — смещены относительно друг друга на 90°. Благодаря этому можно менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.
Более точно определить бифилярный или конденсаторный двигатель перед вами, можно при помощи измерений сопротивления обмоток. Если сопротивление вспомогательной обмотки больше в два раза (разница может быть еще более значительная), скорее всего, это бифилярный двигатель и эта вспомогательная обмотка пусковая, а значит, в схеме должен присутствовать выключатель или пусковое реле. В конденсаторных двигателях обе обмотки постоянно находятся в работе и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.
Схемы подключения однофазных асинхронных двигателей
С пусковой обмоткой
Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.
Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»
Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.
Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).
Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):
- один с рабочей обмотки — рабочий;
- с пусковой обмотки;
- общий.
С этими тремя проводами и работаем дальше — используем для подключения однофазного двигателя.
Со всеми этими
-
Подключение однофазного двигателя с пусковой обмоткой через кнопку ПНВС
подключение однофазного двигателя
Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно). К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифилярного) через кнопку.
Конденсаторный
При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).
Схемы подключения однофазного конденсаторного двигателя
Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.
Схема с двумя конденсаторами
Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.
Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым
При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.
Подбор конденсаторов
Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:
- рабочий конденсатор берут из расчета 70-80 мкФ на 1 кВт мощности двигателя;
- пусковой — в 2-3 раза больше.
Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 вольт берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, для пусковой цепи ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.
Изменение направления движения мотора
Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.
Как все может выглядеть на практике