Какие бывают двигатели по виду применяемого топлива?

Виды двигателей внутреннего сгорания

Мало кто знает, что двигатель внутреннего сгорания был изобретён ещё 5 веков назад, легендарным инженером и конструктором Леонардо да Винчи. Но, после первого чертежа потребовалось ещё 300 лет, чтобы были созданы первые прототипы, которые могли полноценно работать.

Виды двигателей

Первый полноценный прототип двигателя внутреннего сгорания был сконструирован в далёком 1806 году, который принадлежал братьям Ньепсье. После этого важного исторического факта было недолгое затишье.

Но, в конце 19 века три легендарным немца положили старт автомобилестроению — Николас Отто, Готлиб Даймлер и Вильгельм Майбах. После этого двигатели внутреннего сгорания получили много модификаций и вариантов, которые используются по сегодняшний день.

Рассмотрим, какие существуют виды автомобильных ДВС, а также укажем типы двигателей:

  • Паровая машина
  • Бензиновый двигатель
  • Карбюраторная система впрыска
  • Инжектор
  • Дизельные двигатели
  • Газовый двигатель
  • Электрические моторы
  • Роторно-поршневые ДВС

Паровая машина

Первым представителем полноценного двигателя внутреннего сгорания следует считать паровую машину, которая устанавливалась на все транспортные средства 19 века, до момента изобретения остальных видов моторов.

На то время паровыми движками оснащались паровозы, автомобили и даже примитивные трёхколёсные самоходные машины (напоминающие мотоциклы). Изобретение такого класса завоевало весь мир, но к концу 19 — начало 20 века стало неэффективное, поскольку транспортные средства на пару не могли развивать достаточно большую скорость.

Бензиновый двигатель

Бензиновый двигатель — это ДВС средством питания, которого является бензин. Горючее подаётся с топливного бака при помощи насоса (механического или электрического) на систему впрыска. Итак, рассмотрим, какие бывают типы бензиновых моторов:

  • С карбюратором.
  • Инжекторного типа.

Современный мир привык, что большинство автомобилей имеет электронную систему впрыска топлива (инжектор).

Карбюраторная система впрыска

Карбюратор — это тип впрыскового устройства горючего во впускной коллектор с дальнейшим распределением по цилиндрам. Первый примитивный карбюратор был разработан в Германии ещё в конце 19 века и имеет почти 100 летнюю историю развития.

Карбюраторы бывают — одно-, двух-, четырех- и шестикамерные. Кроме этого существует достаточно много прототипов.

Принцип работы карбюратора достаточно простой: бензонасос подаёт топливо в поплавковую камеру, где бензин проходит сквозь жиклёры механическим путём (количество впрыскиваемого топлива регулирует водитель при помощи педали акселератора), и подаётся во впускной коллектор. Недостатком карбюратора стало то, что он чувствительный к регулировкам, а также не соответствует экологическим международным нормам.

Инжектор

Инжекторный двигатель — это тип впрыскового устройства горючего в цилиндры двигателя. Инжекторный впрыск бывает моно и разделённым Данная система на сегодняшний день все больше совершенствуется, чтобы уменьшит выбросы СО2 в атмосферу. Для впрыска используются форсунки, которые ещё ранее начали использоваться на дизельных двигателях.

С переходом на данную систему транспортные средства стали оснащать электронными блоками управления двигателем, чтобы корректировать состав воздушно-топливной смеси, а также сигнализировать о неисправностях внутри системы.

Дизельные двигатели

Дизельный мотор — это вид двигателя, который расходует как горючее дизельное топливо. Основные системы и элементы движка идентичны бензиновому брату, различие состоит в системе впрыска и воспламенении смеси. В дизельном моторе отсутствуют свечи зажигания, поскольку воспламенение смеси от искры не нужно.

На моторах такого типа устанавливаются свечи накала, которые разогревают воздух в камере сгорания, который превышает температуру воспламенения. После этого через форсунки подаётся распылённое топливо, которое сгорает, чем создаёт достаточное давление для привода в движения поршня, который раскручивает коленчатый вал.

Дизель с турбонаддувом

Одним из подвидов дизельного ДВС считается турбодизель. На этом моторе установлена турбина, которая имеет вид улитки. При помощи турбины в мотор подаётся больше количество сжатого воздуха, который даёт больше детонационный эффект, за счёт чего движок можно быстрее разогнать.

Газовый двигатель

Газовые двигатели на сегодняшний день в автоиндустрии в чистом виде почти не используются, поскольку частые поломки моторов, стали причиной полного отказа от них. Вместо этого, газовые установки зачастую можно встретить на бензиновых автомобилях, что значительно экономит расход денег на горючее.

Газ с баллона подаётся на редуктор, который распределяет топливо по цилиндрам, а затем горючее попадает непосредственно в камеры сгорания. После этого с помощью свечей зажигания газ воспламеняется. Единственным недостатком использования газовой установки считается то, что мотор теряет 20% своего потенциального ресурса.

Электрические моторы

Николас Тесла впервые предложил использовать для автомобилей электроэнергию. Электрические моторы на сегодняшний день не распространены, поскольку заряда батареи хватает только до 200 км пути, а заправочных станций, которые могут предоставить услугу зарядки автомобиля — практически нет.

Известная мировая компания, производитель электрических автомобилей «Тесла» продолжает совершенствовать электродвигатели, и каждый год дарит потребителям новинки, которые имеют больший запас хода без дозарядки.

Гибриды

Наверное, самые желаемые двигатели на сегодняшний день. Это смесь бензинового двигателя внутреннего сгорания и электромотора. Существует несколько вариантов работы такого движка.

  1. Мотор может работать на попеременном питании. Сначала движение производится на бензине, пока генератор заряжает батарею, а затем водитель может переключиться на электропитание.
  2. Двигатель и электромотор работают одновременно, что помогает сэкономить расход горючего на одно, и тоже расстояние с другими типами ДВС.

Роторно-поршневые ДВС

Роторно-поршневой силовой агрегат в автомобилестроении не нашёл широкого распространения, хотя можно встретить модели автомобилей, которые используют такой тип ДВС. Предложил создание такого мотора — конструктор Ванкель.

Движение осуществляется за счёт вращения трёхзубчатого ротора, который позволяет осуществить любой 4-тактный цикл Дизеля, Стирлинга или Отто без применения специального механизма газораспределения. Данный мотор активно использовался в 80-е годы 20 ст.

Водородный мотор

НОУ-ХАУ современного мира считается водородный двигатель. В автомобиль устанавливается установка водородного типа. Отличие от бензиновых моторов заключается в подаче топлива. Если у бензина топливо подаётся вовремя возврата поршня к ВТМ, то у водородного силового агрегата в момент, когда поршень возвращается к НТМ.

В будущем планируется создать водородный двигатель закрытого типа, когда не будет требоваться выброс отработанных газов, а также на 500 км автолюбитель сможет забить о заправке автомобиле.

Стоит понимать, что автомобили с таким мотором будут стоить весьма не дёшево, пока они полностью не вытеснят бензинового брата.

Вывод

Двигатели внутреннего сгорания имеют достаточно большое количество видов и типов, на любой вкус. Так, самыми популярными, по мировой статистике, считают бензиновые, дизельные и гибридные силовые агрегата. Но, все движется к тому, что человек хочет отойти от использования бензина и его аналогов и перейти полностью на электрику.

Какие бывают двигатели по виду применяемого топлива

Двигатель поршневого типа, который приводится в работу взрывом воздушно-топливной смеси – это тепловая машина широкой сферы применения. Основным принципом его работы является превращение топливных зарядов во вращающий момент.

Хочется отметить, что популярность ДВС получили в автомобилестроении. Сегодня 80% транспортных средств оснащено такими моторами. Несмотря что принцип их работы аналогичный они отличаются конструкцией, техническими характеристиками, а также используемым типом топлива.

Принцип работы мотора с внутренним сгоранием топлива

Если рассматривать моторы, используемые в автомобиле, то они по большей части четырехтактные. Хотя в других отраслях часто используют двухтактные двигатели. При этом все они работают по следующему принципу:

  • впрыск, подготовленной в соответствии с типом силового агрегата, топливной смеси;
  • воздух и горючее сжимаются под высоким давлением;
  • воспламенение заряда горючего;
  • перемещение поршней в соответствии с рабочим ходом;
  • отработавшие газы выпускаются из камеры.

Это общий принцип работы бензиновых и дизельных двигателей, получивших максимальное распространение в автомобилестроении и других сферах. Не стоит упускать из вида моторы, работающие на газе. Однако их принцип аналогичен рассмотренному выше.

Бензиновый силовой агрегат

Рассматривая бензиновые автомобильные двигатели, стоит отметить, что воспламенение смеси воздуха и бензина обеспечивается искрой, вырабатываемой свечой зажигания. При этом горючее в камеры может подаваться карбюратором или инжекторами. Первый вариант постепенно уходит в историю, так как технически устарел.

Топливная смесь в карбюраторном моторе подается карбюратором. После этого она посредством впускного коллектора впрыскивается в камеры, где происходит воспламенение заряда.

Рассматривая инжекторную силовую установку, стоит отметить, что она бывает двух типов:

  • моноинжекторной;
  • с системой распределенного впрыска.

Первый вариант подразумевает одну форсунку, которая впрыскивает топливо в коллектор, после чего происходит распределение зарядов по цилиндрам. В случае использования распределенного впрыска индивидуальные форсунки предусмотрены для всех цилиндров. Их устанавливают возле впускных клапанов.

Развитие автомобильной промышленности не стоит на месте, и сегодня появились силовые установки, имеющие прямой впрыск горючего. Основная особенность такого ДВС кроется в отдельной подаче в камеры воздуха и бензина. Конструктивно форсунки размещают непосредственно в цилиндрах, а не возле клапанов.

Использование такого принципа позволяет обеспечивать прямую подачу горючего. Благодаря этому топливо сгорает полностью, что позволяет мотору использовать для нормальной работы бедную смесь. А это положительно сказывается на общем расходе горючего. То есть автомобиль становится намного экономичнее, не утрачивая мощности. Кстати если вас интересуют цены на бензин в Украине в Укрнафте, то актуальную информацию можно найти на сайте auto.ria.com.

Дизельная силовая установка

Как видно из названия дизельный мотор работает на солярке. При этом он имеет конструкцию, сильно отличающуюся от бензинового мотора. Первая особенность – отсутствие зажигания с использованием искры. Взрыв топливного заряда происходит вследствие сильного сжатия. На первом этапе происходит сжимание воздуха, что приводит к сильному нагреву. Когда давление достигает необходимого значения, подается дизельное топливо и происходит самовоспламенение без дополнительного источника огня.

Но есть в дизельных двигателях существенные недостатки:

  • повышенная чувствительность топливной системы к качеству солярки;
  • дизельный двигатель намного тяжелее бензинового аналога;
  • меньшая скорость и максимальные обороты.

Дизельный мотор создавался как тихоходное устройство с меньшей частотой вращения коленвала в сравнении с бензиновой установкой. Большой вес дизельного двигателя обусловлен серьезными нагрузками из-за сильного сжатия воздуха в камерах сгорания. Для обеспечения максимальной прочности производители делают элементы мотора мощными и большими, что увеличивает их вес. Кроме этого силовая установка, работающая на солярке, издает больше шума из-за особенностей конструкции.

В качестве заключения

Рассмотрев особенности конструкции дизельного и бензинового моторов, а также принцип их работы сразу заметны их основные отличия. При этом оба варианта за счет своих достоинств и определенных недостатков получили большую популярность в автомобильной промышленности.

Разные конструкции, особенности эксплуатации, экономичность и стоимость горючего заставляют автомобилистов задуматься, автомобиль с каким мотором лучше: дизельным или бензиновым. В данном вопросе нет определенных рекомендаций. Все зависит от целей, преследуемых покупкой, условий эксплуатации машины и личных предпочтений покупателя.

Akagi › Блог › Типы двигателей

Автомобильные поршневые двигатели внутреннего сгорания (ДВС) обладают множеством показателей – мощность, крутящий момент, расход топлива, выброс вредных веществ и т. д., которые во многом зависят от их конструктивных параметров.

Двигатель — устройство, преобразующее энергию сгорания топлива в механическую работу. Практически все автомобильные двигатели работают по циклу, состоящему из четырех тактов:

• впуск воздуха или его смеси с топливом;
• сжатие рабочей смеси,
• рабочий ход при сгорании рабочей смеси;
• выпуск отработавших газов.

Наибольшее распространение в автомобилях получили поршневые двигатели — бензиновые и дизели.

Читайте также  Дизельная турбина на бензиновый двигатель

Бензиновые двигатели имеют принудительное зажигание топливо-воздушной смеси искровыми свечами. Различаются по типу системы питания:

• в карбюраторных смешение бензина с воздухом начинается в карбюраторе и продолжается во впускном трубопроводе. В настоящее время выпуск таких двигателей снижается из-за низкой экономичности и несоответствия современным экологическим нормам;
• в впрысковых двигателях топливо может подаваться одним инжектором (форсункой) в общий впускной трубопровод (центральный, моновпрыск) или несколькими инжекторами перед впускными клапанами каждого цилиндра (распределенный впрыск). В них возможно некоторое увеличение максимальной мощности и снижение расхода бензина и токсичности отработавших газов за счет более точной дозировки топлива электронной системой управления двигателем;
• двигатели с непосредственным впрыскиванием бензина в камеру сгорания, который подается в цилиндр несколькими порциями, что оптимизирует процесс сгорания, позволяет двигателю работать на обедненных смесях, соответственно уменьшается расход топлива и выброс вредных веществ.

Дизели — двигатели, в которых воспламенение смеси топлива с воздухом происходит от повышения ее температуры при сжатии. По сравнению с бензиновыми эти двигатели обладают лучшей экономичностью (на 15-20%) благодаря большей (в два и более раз) степени сжатия (см. ниже), улучшающей процессы горения топливо-воздушной смеси. Достоинством дизелей является отсутствие дроссельной заслонки, которая создает сопротивление движению воздуха на впуске и увеличивает расход топлива. Максимальный крутящий момент (см. ниже) дизели развивают на меньшей частоте вращения коленчатого вала (в обиходе — «тяговиты на низах»).

Дизели устаревших конструкций обладали по сравнению с бензиновыми двигателями и рядом недостатков:

• большей массой и стоимостью при одинаковой мощности из-за высокой степени сжатия (в 1,5-2 раза больше), увеличивавшей давление в цилиндрах и нагрузки на детали, что заставляло изготавливать более прочные элементы двигателя, увеличивая их габариты и вес;
• большей шумностью из-за особенностей процесса горения топлива в цилиндрах;
• меньшими максимальными оборотами коленвала из-за более высокой массы деталей, вызывавшей большие инерционные нагрузки. По этой же причине дизели, как правило, менее приемисты — медленнее набирают обороты.

Роторно-поршневой двигатель (Ванкеля) — в нем ротор-поршень совершает не возвратно-поступательное движение, как в бензиновых двигателях и дизелях, а вращается по определенной траектории. Благодаря этому он обладает хорошей приемистостью — быстро набирает обороты, обеспечивая автомобилю хорошую динамику разгона. Из-за конструктивных особенностей степень сжатия ограничена, поэтому работает только на бензине и обладает худшей экономичностью из-за формы камеры сгорания. Раньше его недостатком был меньший ресурс, а теперь и невысокие экологические показатели, которым сейчас уделяется большое внимание.

Гибридная силовая установка представляет собой комбинацию поршневого двигателя (как правило, дизеля), электродвигателя, генератора и тяговых (тяговая аккумуляторная батарея, в отличие от стартерной, рассчитана на разряд большими токами (50-100 А) в течение 30-60 минут) аккумуляторных батарей. Работа этой установки происходит в различных режимах в зависимости от характера движения автомобиля. При интенсивном разгоне вместе работают поршневой и электрический двигатели. Во время торможения двигателем за счет энергии замедления генератор заряжает аккумуляторные батареи. При движении в городском цикле может работать только электродвигатель. Все это позволяет, сохраняя (или даже улучшая) динамику разгона, значительно повысить экономичность и снизить выброс вредных веществ.

Компоновка поршневых двигателей

Значительное разнообразие компоновок поршневых двигателей связано с их размещением в автомобиле и необходимостью уместить определенное количество цилиндров в ограниченном объеме моторного отсека.

Рядный двигатель (рис. 1, а) — компоновка, при которой все цилиндры находятся в одной плоскости. Применяется для небольшого количества цилиндров (2, 3, 4, 5 и 6). Рядный шестицилиндровый двигатель легче всего поддается уравновешиванию (снижению вибраций), но обладает значительной длиной.

V-образный двигатель (рис. 1, б) — цилиндры у него расположены в двух плоскостях, как бы образуя латинскую букву V. Угол между этими плоскостями называют углом развала. Наиболее часто такое размещение цилиндров применяется для шести- и восьмицилиндровых двигателей и обозначается V6 и V8 соответственно. Такая компоновка позволяет уменьшить длину двигателя, но увеличивает его ширину.

Оппозитный двигатель (рис. 1, в) имеет угол развала 180°, благодаря этому у него высота агрегата наименьшая среди всех компоновок.

VR-двигатель (рис. 1, г) обладает небольшим углом развала (порядка 15°), что позволяет уменьшить как продольный, так и поперечный размеры агрегата.

W-двигатель имеет два варианта компоновки — три ряда цилиндров с большим углом развала (рис. 1, д) или как бы две VR-компоновки (рис. 1, е).Обеспечивает хорошую компактность даже при большом количестве цилиндров. В настоящее время серийно выпускают W8 и W12.

Конструктивные параметры двигателей

Любой двигатель характеризуется следующими конструктивно заданными параметрами (рис. 2), практически неизменными в процессе эксплуатации автомобиля.

Объем камеры сгорания — объем полости цилиндра и углубления в головке над поршнем, находящимся в верхней мертвой точке — крайнем положении на наибольшем удалении от коленвала.

Рабочий объем цилиндра — пространство, которое освобождает поршень при движении от верхней до нижней мертвой точки. Последняя является крайним положением поршня на наименьшем удалении от коленвала.

Полный объем цилиндра — равен сумме рабочего объема и объема камеры сгорания.

Рабочий объем двигателя (литраж) складывается из рабочих объемов всех цилиндров.

Степень сжатия — отношение полного объема цилиндра к объему камеры сгорания. Этот параметр показывает, во сколько раз уменьшается полный объем при перемещении поршня из нижней мертвой точки в верхнюю. Для бензиновых двигателей определяет октановое число применяемого топлива.

Показателями двигателя называют величины, характеризующие его работу. Помимо конструктивных параметров, они зависят от особенностей и настроек систем питания и зажигания, степени износа деталей и пр.

Давление в конце такта сжатия (компрессия) является показателем технического состояния (изношенности) цилиндро-поршневой группы и клапанов.

Крутящий момент на коленчатом валу двигателя определяет силу тяги на колесах: чем он больше, тем лучше динамика разгона автомобиля. Равен произведению силы на плечо (рис. 3) и измеряется в Н·м (Ньютон на метр), ранее в кгс.м (килограмм-сила на метр).

Крутящий момент увеличивается с ростом:
рабочего объема . Поэтому двигатели, которым необходим значительный крутящий момент, обладают большим объемом;
давления горящих газов в цилиндрах, которое ограничено детонацией (взрывное горение бензо-воздушной смеси, сопровождаемое характерным звонким звуком. Ошибочно называется «стуком поршневых пальцев») или ростом нагрузок в дизелях.

Максимальный крутящий момент двигатель развивает при определенных оборотах (см. ниже), они вместе с его величиной указываются в технической документации.

Мощность двигателя — величина, показывающая, какую работу он совершает в единицу времени, измеряется в кВт (ранее в лошадиных силах). Одна лошадиная сила (л.с.) приблизительно равняется 0,74 кВт. Мощность равна произведению крутящего момента на угловую скорость коленвала (число оборотов в минуту, умноженное на определенный коэффициент).

Двигатели большей мощности производители получают увеличением:
рабочего объема, что, в свою очередь, приводит к росту габаритов двигателя и ограничению допустимых максимальных оборотов из-за значительных сил инерции увеличившихся деталей;
оборотов коленчатого вала, число которых ограничено инерционными силами и увеличением износа деталей. Высокооборотный двигатель одинаковой мощности (при прочих равных условиях — конструкции двигателя, технологии изготовления, применяемых материалах и т.д.) с низкооборотным обладает меньшим сроком службы, так как в среднем для одного и того же пробега его коленчатый вал будет совершать больше оборотов;
давления в цилиндре путем повышения степени сжатия либо наддувом воздуха посредством турбо- или механических нагнетателей. Для применения наддува степень сжатия вынужденно уменьшают для предотвращения детонации (у бензиновых двигателей) и снижения жесткости работы (повышенные нагрузки в цилиндро-поршневой группе дизеля, сопровождаемые чрезмерным шумом) (у дизелей). Наддув позволяет, например, сохранить мощность при меньшем рабочем объеме.

Номинальная мощность — гарантируемая производителем мощность при полной подаче топлива на определенных оборотах. Именно она, а не максимальная мощность, указывается в технической документации на двигатель.

Удельный расход топлива — это количество топлива, расходуемого двигателем на 1 кВт развиваемой мощности за один час. Является показателем совершенства конструкции двигателя: чем расход ниже, тем более эффективно используется энергия сгорающего в цилиндрах топлива.

При одних и тех же конструктивных параметрах у разных двигателей такие показатели, как мощность, крутящий момент и удельный расход топлива, могут отличаться. Это связано с такими особенностями, как количество клапанов на цилиндр, фазы газораспределения и т. п. Поэтому для оценки работы двигателя на разных оборотах используют характеристики — зависимость его показателей от режимов работы. Характеристики определяются опытным путем на специальных стендах, так как теоретически они рассчитываются лишь приблизительно.

Как правило, в технической документации к автомобилю приводятся внешние скоростные характеристики двигателя (рис. 4), определяющие зависимость мощности, крутящего момента и удельного расхода топлива от числа оборотов коленвала при полной подаче топлива. Они дают представление о максимальных показателях двигателя.

Показатели двигателя (упрощенно) изменяются по следующим причинам. С увеличением числа оборотов коленвала растет крутящий момент благодаря тому, что в цилиндры поступает больше топлива. Примерно на средних оборотах он достигает своего максимума, а затем начинает снижаться. Это происходит из-за того, что с увеличением скорости вращения коленвала начинают играть существенную роль инерционные силы, силы трения, аэродинамическое сопротивление впускных трубопроводов, ухудшающее наполнение цилиндров свежим зарядом топливо-воздушной смеси, и т. п.

Быстрый рост крутящего момента двигателя указывает на хорошую динамику разгона автомобиля благодаря интенсивному увеличению силы тяги на колесах. Чем дольше величина момента находится в районе своего максимума и не снижается, тем лучше. Такой двигатель более приспособлен к изменению дорожных условий и реже придется переключать передачи.

Мощность растет вместе с крутящим моментом и даже, когда он начинает снижаться, продолжает увеличиваться благодаря повышению оборотов. После достижения максимума мощность начинает снижаться по той же причине, по которой уменьшается крутящий момент. Обороты несколько выше максимальной мощности ограничивают регулирующими устройствами, так как в этом режиме значительная часть топлива расходуется не на совершение полезной работы, а на преодоление сил инерции и трения в двигателе. Максимальная мощность определяет максимальную скорость автомобиля. В этом режиме автомобиль не разгоняется и двигатель работает только на преодоление сил сопротивления движению — сопротивления воздуха, сопротивления качению и т. п.

Величина удельного расхода топлива также меняется в зависимости от оборотов коленвала, что видно на характеристике (см. рис. 4). Удельный расход топлива должен находиться как можно дольше вблизи минимума; это указывает на хорошую экономичность двигателя. Минимальный удельный расход, как правило, достигается чуть ниже средних оборотов, на которых в основном и эксплуатируется автомобиль при движении в городе.

Пунктирной линией на графике показаны более оптимальные характеристики двигателя.

Двигатель: типы, системы питания

Автор: Александра ХОВАНСКАЯ | Источник: www.rul.by | Фото: Фото производителя

Двигатели легковых авто классифицируют: 1. По роду применяемого топлива — бензиновые, дизельные. 2. По способу образования горючей смеси — внешнее (карбюратор) и внутреннее у дизельного ДВС. 3. По способу воспламенения либо искра либо сжатие. 4. По числу и расположению цилиндров разделяют рядные, горизонтальные (оппозитные), вертикальные, V-образные.

Двигатели легковых авто классифицируют:
1. По роду применяемого топлива — бензиновые, дизельные.
2. По способу образования горючей смеси — внешнее (карбюратор) и внутреннее у дизельного ДВС.
3. По способу воспламенения либо искра либо сжатие.
4. По числу и расположению цилиндров разделяют рядные, горизонтальные (оппозитные), вертикальные, V-образные.

Читайте также  Присадки для раскоксовки поршневых колец бензиновых двигателей

Бензиновые двигатели — это класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая топливовоздушная смесь поджигается электрической искрой. Управление мощностью в бензиновом двигателе производится регулированием потока воздуха, посредством дроссельной заслонки.

Карбюраторные и инжекторные двигатели
По способу смесеобразования бензиновые двигатели делятся на карбюраторные, инжекторные и прямого впрыска.
Процесс приготовления горючей смеси в карбюраторных двигателях происходит в карбюраторе — специальном устройстве, в котором за счёт аэродинамических сил топливо смешивается с потоком воздухаРабочий орган представляет собой пластину, закрепленную на вращающейся оси, помещённую в трубу, в которой протекает регулируемая среда.
В инжекторных двигателях впрыск топлива в воздушный поток осуществляют специальные форсунки, к которым топливо подаётся под давлением, а дозирование осуществляется электронным блоком управления — подачей импульса тока, открывающим форсунку.
Переход от классических карбюраторных двигателей к инжекторам произошёл в основном из-за возрастания требований к чистоте выхлопа (выпускных газов), и установке современных нейтрализаторов выхлопных газов (катализаторов). Обязательным элементом такой системы управления является лямбда-зонд (кислородный датчик). Благодаря кислородному датчику система управления, постоянно анализируя содержание кислорода в выхлопных газах, поддерживает точное соотношение кислорода, недоокисленных продуктов сгорания топлива, и оксидов азота, которое способен обезвредить катализатор.

Система непосредственного впрыска
Самой современной системой впрыска топлива бензиновых двигателей является система непосредственного впрыска топлива, основанная на впрыске топлива непосредственно в камеру сгорания двигателя.
Применение данной системы позволяет достичь до 15% экономии топлива, а также сокращения выброса вредных веществ с отработавшими газами.
Конструкция системы непосредственного впрыска топлива рассмотрена на примере системы, устанавливаемой на двигатели FSI (Fuel Stratified Injection – послойный впрыск топлива). Система представляет собой дальнейшее развитие объединенной системы впрыска и зажигания Motronic.

Устройство системы непосредственного впрыска:
• топливный насос высокого давления;
• регулятор давления топлива;
• топливная рампа;
• предохранительный клапан;
• датчик высокого давления;
• форсунки впрыска;
• блок управления двигателем;
• входные датчики.

Топливный насос высокого давления подает топливо к форсункам впрыска под высоким давлениям (3-11 МПА) в соответствии с потребностями двигателя. Основу конструкции насоса составляет один или несколько плунжеров. Насос приводится в действие от впускного распределительного вала двигателя.

Регулятор давления топлива обеспечивает дозированную подачу топлива насосом в соответствии с впрыском форсунки. Расположен в топливном насосе высокого давления.

Топливная рампа распределяет топливо по форсункам впрыска и предотвращает пульсацию топлива в контуре.

Предохранительный клапан устанавливается на топливной рампе и защищает элементы системы впрыска от предельных давлений, возникающих при температурном расширении топлива.

Датчик высокого давления служит для измерения давления в топливной рампе. В соответствии с сигналами датчика блок управления двигателем может изменять давление в топливной рампе.

Форсунка впрыска обеспечивает распыление топлива для образования определенного вида топливно-воздушной смеси.

Блок управления двигателем в совокупности с входными датчиками образуют систему управления двигателем.

В результате работы система непосредственного впрыска обеспечивает:

послойное смесеобразование — используется при работе двигателя на малых и средних оборотах и нагрузках. Дроссельная заслонка почти полностью открыта, впускные заслонки закрыты. Воздух, с образованием воздушного вихря, поступает в камеры сгорания с большой скоростью. В зону свечи зажигания в конце такта сжатия производится впрыск топлива. За непродолжительное время до воспламенения в районе свечи зажигания образуется топливно-воздушная смесь с коэффициентом избытка воздуха от 1,5 до 3. Смесь воспламеняется и вокруг нее остается достаточно много чистого воздуха, выступающего в роли теплоизолятора.

стехиометрическое гомогенное смесеобразование — применяется при высоких оборотах двигателя и больших нагрузках. Впускные заслонки открыты, дроссельная заслонка открывается в соответствии с положением педали газа. Впрыск топлива происходит на такте впуска, что способствует образованию однородной смеси. Коэффициент избытка воздуха составляет 1. При воспламенении смесь эффективно сгорает во всем объеме камеры сгорания.

гомогенное смесеобразование — двигатель работает в промежуточных режимах. Дроссельная заслонка максимально открыта, впускные заслонки закрыты. При этом создается интенсивное движение воздуха в цилиндрах. На такте впуска производится впрыск топлива. Коэффициент избытка воздуха поддерживается на уровне 1,5.

Четырехтактные и двухтактные двигатели
По способу осуществления рабочего цикла двигатели бывают четырехтактные и двухтактные.
Двухтактные двигатели обладают меньшим КПД, однако большей мощностью на единицу объёма. Поэтому применяются там, где очень важны небольшие размеры и неважна топливная экономичность, например, на мотоциклах.
Четырёхтактные двигатели устанавливаются на большинство транспортных средств. Не только бензиновые, но и дизельные двигатели могут быть четырёхтактными или двухтактными. Двухтактные дизели применяются в основном на больших судах (реже на тепловозах и грузовиках) и лишены многих недостатков бензиновых двухтактных двигателей.

Также бензиновые двигатели классифицируют по числу цилиндров — одноцилиндровые, двухцилиндровые и многоцилиндровые; по расположению цилиндров — двигатели с вертикальным или наклонным расположением цилиндров в один ряд («рядный» двигатель), V-образные с расположением цилиндров под углом, W-образные, использующие 4 ряда цилиндров, расположенных под углом с 1 коленвалом; по способу охлаждения — на двигатели с жидкостным или воздушным охлаждением; по типу смазки — смешаный тип (масло смешивается с топливной смесью) и раздельный тип (масло находится в картере); по виду применяемого топлива — бензиновые и многотопливные; по степени сжатия — двигатели высокого (E=12…18) и низкого (E=4…9) сжатия; по способу наполнения цилиндра свежим зарядом: двигатели без наддува (атмосферные), у которых впуск воздуха или горючей смеси осуществляется за счет разряжения в цилиндре при всасывающем ходе поршня; двигатели с наддувом, у которых впуск воздуха или горючей смеси в рабочий цилиндр происходит под давлением, создаваемым турбокомпрессором, с целью увеличения заряда воздуха и получения повышенной мощности и КПД двигателя; по частоте вращения: тихоходные, повышенной частоты вращения, быстроходные; по назначению-стационарные, автотракторные, судовые, тепловозные, авиационные и др.

Дизельный двигатель — это поршневой двигатель внутреннего сгорания, который работает по принципу воспламенения топлива от сжатия и высокой температуры. Дизельные двигатели используют в своей работе дизельное топливо (в народе — «солярка»).
Первый «Дизель-мотор» был построен Рудольфом Дизелем в начале 1897 года и успешно испытан 28 января того же года.
Основное отличие дизельного двигателя от бензинового — способ подачи топливовоздушной смеси в цилиндр и способ ее воспламенения. В дизеле воздух подается в цилиндр отдельно от топлива и затем сжимается. Из-за высокой степени сжатия (обычно 20:1), воздух от сжатия нагревается до температуры свыше 700°С. Когда поршень поднимается в верхнюю мертвую точку (конец такта сжатия), топливо под очень высоким давлением впрыскивается в камеру сгорания в распыленном до мельчайших частиц состоянии. Затем топливо смешивается с воздухом, и, так как температура воздуха очень высокая, происходит сгорание топливовоздушной смеси. При сгорании выделяется энергия, которая движет поршень вниз (рабочий ход). При снижении температуры воздуха из-за образования парафина текучесть дизельного топлива ухудшается. По этой причине оно становится густым и забивает топливный фильтр. Именно из-за этого фирмы-производители дизельного топлива добавляют в него зимой специальные присадки, которые повышают текучесть топлива и гарантируют надежный запуск до температуры минус 22°С. Если при похолодании (ниже -10°С) в баке находится летнее топливо, то нужно добавить в него специальную разжижающую присадку. При запуске двигателя в холодную погоду температура сжатого воздуха в цилиндре может оказаться недостаточной для воспламенения топлива. Решить эту проблему помогает система предварительного накала (подогрева).

Как работает дизель?
Первый такт (такт впуска, поршень идет вниз) — воздух втягивается в цилиндр через открытый впускной клапан.
Второй такт (такт сжатия, поршень идет вверх) — впускной и выпускной клапаны закрыты, воздух сжимается в объеме примерно в 17 раз (от 14:1 до 24:1), т.е. по сравнению с общим объемом цилиндра объем становится меньше в 17 раз, воздух становится очень горячим.
Третий такт (такт рабочего хода, поршень идет вниз) — топливо впрыскивается в камеру сгорания через распылитель форсунки. При впрыске топливо распыляется на мелкие частицы, которые перемешиваются со сжатым воздухом для создания самовоспламеняемой смеси. Энергия высвобождается при сгорании, когда поршень начинает свое движение в такте рабочего хода. Впрыск продолжается, что вызывает поддержание постоянного давления сгораемого топлива на поршень.
Четвертый такт (такт выпуска, поршень идет вверх) — выпускной клапан открывается и через него проходят выхлопные газы.

Common Rail
Самый современный этап эволюции бензиновых и дизельных двигателей с прямым впрыском топлива — дизель системы Common Rail. Отличие его от традиционных дизелей с низким давлением подачи топлива в наличии рампы, куда под большим давлением (более 1000бар) подается дизельное топливо, которое далее распределяется между электрическими форсунками с соленоидными клапанами.
Прототип системы Common Rail был разработан в конце 60-х годов Робертом Хубером в Швейцарии.

Принцип работы:
Насос поставляет дизельное топливо из бака через подогреватель топлива и фильтр к насосу высокого давления. Он приводится в работу двигателем и направляет топливо под высоким давлением в рампу. Для нормальной работы некоторых типов систем необязательно поддерживать постоянно самое высокое давление. Трубки рампы оканчиваются инжекторами и имеют одинаковую длину. На рампе также расположен регулятор давления, который отправляет лишнюю часть топлива обратно в бак через охладитель. С помощью датчика давления в рампе блок управления двигателем может получать информацию о давлении в рампе и контролировать его.
В настоящее время дизели системы COMMON RAIL вытесненяют традиционные дизеля. Причинами этого служат меньший шум, лучшие экологические данные по выхлопу, более дешевое производство компонентов.

Типы автомобильных двигателей

Двигатель – это сердце автомобиля, он является движущей силой машины. Он служит для преобразования энергии топлива в механическую энергию, которая используется для выполнения полезной работы.

Классификация двигателей по типу

Принцип работы силового агрегата основывается на преобразования тепловой энергии в механическую. Повторяющиеся процессы в моторе являют собой рабочий цикл двигателя. Зависимо от того, сколько поршень делает ходов, двигатели делятся на четырехтактные и двухтактные. Двигатели внутреннего сгорания, которые применяются в машинах, работают по 4-тактному циклу. Сюда входит впуск топлива, рабочий ход (туда-назад) и выпуск отработанных газов.

В двухтактном моторе за один цикл происходит всего 2 хода поршня: рабочий ход и сжатие. Наполнение цилиндров и очистка происходит во время этих 2-х тактов. У двигателей этого типа есть существенные недостатки, например высокий уровень выброса выхлопных газов. Главный минус – это высокий расход топлива, из-за чего двухтактные двигатели не используются в современных автомобилях.

Инжекторный тип двигателя

Ижекторный двигатель работает немного иначе: топливо подается в воздушную среду способом мелкого впрыска. Под давлением через форсунку распыляется горючая жидкость, что значительно снижает расход топлива, потому как количество дозируют специальные устройства. По этой причине инжекторные двигатели более экономичные, а оптимальная пропорция горючей смеси позволяет увеличить чистоту выхлопа и повысить КПД силового агрегата.

Инжекторные двигатели делятся на механические и электронные. В механическом двигателе устанавливается дозировка топлива с помощью рычагов, а в электронном силовом агрегате применяется специальная система управления дозировкой топлива. При использовании таких систем более тщательно перегорает топливо и снижаются вредные выбросы.

Читайте также  Принцип работы турбированного бензинового двигателя

Тип двигателя карбюраторный

Бензин, который проходит через топливную систему, попадает в карбюратор или впускной коллектор. В него же поступает воздух, который в дальнейшем смешивается с топливом и получается готовая смесь. Она подается в цилиндры и там поджигается искрой, которую дают свечи зажигания.

Автомобили с карбюраторным типом двигателем на данный момент считаются устаревшими. Сейчас широко используются двигатели инжекторного типа. Распыление топлива производится форсунками или через впускной коллектор.

Дизельный тип двигателя

Отдельного внимания достойны дизельные двигатели. Их принцип работы основывается на воспламенении рабочей смеси при сжатии. Когда втягивается воздух, процесс происходит под высоким давлением, в результате чего смесь самовоспламеняется. После воспламенения происходит рабочий ход поршня, который потом вытесняет отработавшие газы.

Данный тип двигателя имеет более низкий расход топлива и небольшое количество вредных веществ в выбросах. КПД этого силового агрегата тоже намного выше. Дизельные двигатели сейчас продолжают совершенствоваться и даже заморозки уже не помеха к запуску мотора.

Разные виды двигателей, работающих на дизельном топливе, отличаются характеристиками, которые зависят от времени года. Эти силовые агрегаты не имеют системы зажигания, потому как топливо загорается из-за высокого давления, что дает движение поршня.

Видео типы двигателей

Какие бывают двигатели по виду применяемого топлива?

В зависимости от вида топлива и особенностей конструкции поршневые ДВС делятся на бензиновые и дизельные.

Бензиновый двигатель Дизельный двигатель
На легковых автомобилях наибольшее распространение получил бензиновый ДВС. Он работает только на бензине с различным октановым числом. Предварительно сжатая в цилиндре топливно-воздушная смесь воспламеняется с помощью искры, подаваемой свечой зажигания. Управление мощностью осуществляется дроссельной заслонкой, регулирующей поток воздуха. КПД бензинового мотора составляет около 20-30%, но такой двигатель может работать на высоких оборотах и имеет большую удельную мощность. Показатели давления и температуры в цилиндрах у бензинового ДВС меньше, чем у дизельного, а в выхлопе содержится меньше серы, сажи и токсичных газов, но больше окиси углерода. Дизельные двигатели стали массово использоваться на легковых автомобилях только в конце XX века. КПД у дизельного мотора выше, чем у бензинового (40-45%), при этом в качестве топлива могут выступать низкосортные продукты нефтепереработки или даже растительные масла. Принцип работы дизельного ДВС заключается в самовоспламенении топливной смеси в цилиндре от сжатия, при высоких давлении и температуре. Это требует более прочной конструкции и защиты от высоких температур, зато у дизельного силового агрегата отсутствуют свечи зажигания, а смесеобразование и сгорание проходят быстрее, чем в бензиновом. Мощность регулируется не дроссельной заслонкой, а непосредственно интенсивностью впрыска топлива в цилиндры. К недостаткам дизельного двигателя относятся дорогой ремонт, необходимость использования более мощного стартера, характерный стук при работе и застывание летнего дизельного топлива на морозе.

В зависимости от количества тактов в рабочем цикле различают двухтактные и четырёхтактные двигатели внутреннего сгорания. Особое место в этой классификации занимает роторно-поршневой двигатель Ванкеля, который не относится к поршневым ДВС, но по сути является четырёхтактным.

При первом такте (сжатия) поршень перемещается от нижней мёртвой точки к верхней, перекрывая нижнее и верхнее продувочные окна и сжимая поступившую ранее топливную смесь. Одновременно в кривошипную камеру, расположенную в нижней части цилиндра, вследствие её герметичности поступает новая топливная смесь. При втором такте (рабочего хода) сжатая горючая смесь воспламеняется искрой от свечи зажигания, в результате чего поршень под давлением движется к нижней мёртвой точки, вращая коленчатый вал и сжимая смесь в кривошипной камере. Из последней топливная смесь через открытое впускное окно заполняет цилиндр, вытесняя отработавшие газы через выпускное окно (продувка). Далее поршень снова поднимается вверх, и цикл повторяется.

Преимущества двухтактного двигателя заключается в том, что он проще по конструкции, чем четырёхтактный, и даёт примерно в 1,5 раз больше мощности при том же рабочем объёме. Однако в наше время двухтактные ДВС практически не используются из-за низкой экономичности и плохих экологических показателей, связанных с неполным сгоранием топливно-воздушной смеси и попадании части её в выпускное окно при продувке.

Роторно-поршневой мотор обладает рядом преимуществ перед традиционным, так как развивает больше мощности при меньшем объёме, имеет небольшие габариты и относительно простую конструкцию. К недостаткам двигателя Ванкеля относятся быстрый износ уплотнителей между ротором и камерой сгорания, требование высокой точности при сборке деталей, необходимость специальной системы смазки, склонность к перегреву и неэкономичность на низких оборотах.

Газотурбинный двигатель (ГТД) может работать на любом топливе, от керосина до мазута, и всегда имеет бОльшую удельную мощность, чем поршневой ДВС, хотя КПД у него ниже. По компактности, весу, шуму и вибрациям ГТД значительно лучше поршневого ДВС, но из-за таких факторов, как высокая стоимость (объясняется необходимостью использования жаростойких материалов), большая частота оборотов (до 100000 об/мин), высокая температура выхлопа и задержка отклика на управление мощностью (невозможность снижения оборотов при отпущенной педали газа без торможения), он так и не нашёл применения на легковых автомобилях, за исключением нескольких концепт-каров.

По конфигурации, то есть взаимному расположению цилиндров, автомобильные двигатели бывают:

  • Рядные — цилиндры расположены на одной линии, а их поршни вращают один коленчатый вал. Такие двигатели более простые по конструкции, надёжные и удобные в обслуживании, чем V-образные. Могут иметь как чётное (2, 4, 6 или 8), так и нечётное (3 или 5) количество цилиндров. В наше время наиболее распространёнными являются рядные 4-цилиндровые моторы, а 6-цилиндровые постепенно выходят из употребления, подобно тому, как в послевоенные годы перестали использоваться рядные 8-цилиндровые двигатели. Это связано с большой длиной блока цилиндров и коленчатого вала, требующей много места под капотом, а также быстрым износом. Существует и такой вариант конфигурации, как U-образный двигатель, который состоит из двух установленных параллельно рядных блоков с отдельными коленчатыми валами, соединёнными цепью или шестерней.
  • V-образные — цилиндры расположены один напротив другого под углом от 10° до 120°. Мотор состоит из двух блоков цилиндров, немного смещённых относительно друг друга и соединённых общим коленчатым валом. V-образные двигатели имеют только чётное количество цилиндров (2, 4, 6, 8, 10, 12 или 16). Как правило, такие двигатели более компактные и сбалансированные, чем рядные, и обеспечивают больше мощности. Разновидностью V-образной конфигурации являются моторы Volkswagen VR5 и VR6, состоящие из двух блоков цилиндров, установленных близко друг другу под углом 10°-15° и соединённых общей головкой. Такая конфигурация совмещает в себе преимущества рядных и V-образных двигателей.
  • Оппозитные, или плоские, — цилиндры расположены в двух блоках с углом развала 180°, то есть горизонтально один напротив другого. Двигатель имеет плоскую форму и обычно применяется в заднемоторных автомобилях.
  • W-образные — цилиндры расположены в трёх или четырёх параллельных блоках и соединены общим коленчатым валом. В наше время W-образные двигатели, полученные в результате соединения двух моторов конфигурации VR, использует только компания Volkswagen.
  • Радиальные, или звездообразные, — цилиндры расположены радиальными лучами вокруг коленчатого вала через равные углы, обычно в один ряд. Такие двигатели широко применяются в авиации, а на автомобилях встречаются крайне редко.

Двигатели также различаются по количеству цилиндров:

  • 1-цилиндровый — простейшая разновидность поршневого ДВЗ, состоящая из одного цилиндра. Исторически самый первый, но несбалансированный и наименее эффективный вид силового агрегата. Применялся на ранних мотоколясках и на микроавтомобилях.
  • 2-цилиндровый — как и 1-цилиндровый, встречается чаще в 2-тактном варианте, поскольку 4-тактные моторы такого типа не обеспечивают плавности хода. Бывает трёх конфигураций: рядный, V2 и F2. Устанавливался на микрокары и автомобили конца XIX — начала XX века.
  • 3-цилиндровый — из-за нечётного количества цилиндров также является несбалансированным и бывает только рядным. 3-цилиндровые моторы небольшого объёма (до 1.2 л) ставятся на некоторые из современных малолитражек.
  • 4-цилиндровый — самый распространённый и выгодный в производстве двигатель, подходящий для любого автомобиля относительно небольших размеров. Конструкция рядного 4-цилиндрового мотора несбалансированная, но при небольшом объёме не требует дополнительного балансировочного вала. Объём современных 4-цилиндровых двигателей составляет от 0.7 до 2.3 л, хотя раньше встречались и гораздо большие агрегаты. Относительно редкими являются конфигурации V4 и F4, которые применялись в некоторых заднемоторных автомобилях и отличались повышенной шумностью.
  • 5-цилиндровый — впервые появился на Mercedes-Benz в середине 70-х гг., но до сих пор встречается нечасто. Несбалансированный и дорогой в производстве, поскольку не может быть унифицирован с 4-х или 6-цилиндровыми моторами. Бывает рядный или конфигурации VR.
  • 6-цилиндровый — исторически наиболее распространённый в рядной конфигурации, которая отличается сбалансированностью и плавностью работы, на автомобилях среднего или высшего класса. Однако из-за большой длины и трудностью поперечной установки такие двигатели постепенно уходят в прошлое. Сейчас чаще используются моторы V6, несбалансированные, но более компактные и пригодные для переднеприводной компоновки. Оппозитные 6-цилиндровые двигатели ставятся на Porsche 911.
  • 8-цилиндровый — в рядной конфигурации, несмотря на большую длину блока, является сбалансированным и создаёт минимум вибраций, но, как правило, ограничен в максимальных оборотах из-за риска деформации коленчатого вала. Использовался только в довоенные годы на люксовых автомобилях, в отличие от мотора V8, который применялся на машинах разных ценовых категорий, особенно в США, а сейчас чаще всего встречается на внедорожниках и спортивных моделях. Преимущества двигателя V8 заключаются в относительной компактности и высокой производительности, недостатки — в несбалансированности и высоких показателях расхода топлива при большом объёме.
  • 10-цилиндровый — на автомобилях бывает только V-образным, получается в результате соединения двух рядных 5-цилиндровых моторов или добавления к V8 дополнительной пары цилиндров. Устанавливается на спорткары или полноразмерные пикапы.
  • 12-цилиндровый — в V-образной конфигурации состоит из двух рядных 6-цилиндровых блоков или двух моторов V6, конструкция полностью сбалансированная. Двигатель V12 часто использовался на роскошных довоенных автомобилях, а сегодня встречается на многих суперкарах. Бывает и в варианте W12 из трёх 4-цилиндровых или четырёх 3-цилиндровых блоков, крайне редко — в оппозитной конфигурации.
  • 16-цилиндровый — V-образный встречается на автомобилях в исключительных случаях: на довоенных моделях Cadillac, Marmon и Peerless, а также на некоторых гоночных болидах. Прекрасно сбалансированный и практически бесшумный, но слишком длинный и дорогой в производстве. Двигатель W16, состоящий из двух блоков VR6, имеет только один серийный автомобиль — Bugatti Veyron.
  • 18-цилиндровый — в конфигурации W18 из трёх рядных 6-цилиндровых блоков под углом 60° использовался на нескольких прототипах Bugatti в конце 90-х гг.
Тип двигателя Устройство Пример
Рядный 2-цилиндровый
3-цилиндровый
4-цилиндровый
5-цилиндровый
6-цилиндровый
8-цилиндровый
V-образный 2-цилиндровый
4-цилиндровый
6-цилиндровый
8-цилиндровый
10-цилиндровый
12-цилиндровый
16-цилиндровый
Оппозитный 2-цилиндровый
4-цилиндровый
6-цилиндровый
8-цилиндровый
12-цилиндровый
16-цилиндровый
W-образный 6-цилиндровый
8-цилиндровый
12-цилиндровый
16-цилиндровый
18-цилиндровый
Радиальный 6-цилиндровый
8-цилиндровый
12-цилиндровый
16-цилиндровый

В зависимости от типа ГРМ различают нижнеклапанные и верхнеклапанные двигатели внутреннего сгорания.

Разновидностью нижнеклапанного типа ГРМ является схема T-head, когда впускные клапаны расположены с одной стороны блока цилиндров, а выпускные — с другой, при этом распределительных вала два. Также существовали двигатели со смешанным расположением клапанов (F-head), с верхними впускными, боковыми выпускными клапанами и одним распредвалом в блоке.